
Commit 2.0: Enriching Commit Comments with
Visualization

Marco D’Ambros
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

marco.dambros@usi.ch

ABSTRACT
Software developers use commit comments to document changes
and as a mean of communication in their team. However,
the support given by IDEs is restricted with this respect, as
they limit the users to use only text to document changes.

In this paper we propose and implement an approach to
enrich commit comments with software visualization: Com-
mit 2.0 generates visualizations of the performed changes
at different granularity levels, and let the user enrich them
with annotations.

1. INTRODUCTION
Nowadays the majority of all software development projects

employ versioning system with a repository in which soft-
ware developers commit code changes. Many versioning
systems (e.g., Git, CVS, ClearCase) allow the developer to
write a comment at commit time and store it together with
the changes. The information contained in such comments
is extremely useful both for software development and soft-
ware evolution analysis: In software development commit
comments are used to document changes and as a mean of
communication in the development team. With respect to
software evolution, many approaches in the field of Mining
Software Repositories, deal with mining and analyzing this
commit related information.

Given the importance of commit comments data, devel-
opers should write meaningful comments which exhaustively
document the changes. However, developers do not always
document all the changes in the commit comment. This hap-
pens for a number of reasons which can vary among software
projects, development teams and organizations, because of
different practices and different development rules. Still, a
common cause is that writing exhaustive comments is time-
consuming, and -being the last step of a coding session- the
necessary time and energy could not always be available.
Moreover, for commits with many changes, the developers
might not remember all of the modifications.

Another problem of commit comments is the lack of con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

text in which changes occur. For example, if a developer
changes 5 classes to add a new feature in a system, in the
commit comment he can describe the feature and list classes
and methods. However, when reading such a comment, it is
not clear where the modified classes (and methods) are in
the system, which relationships they have and what the size
of the change is, relatively to the size of the system.

We argue that IDEs should provide means to ease the
task of documenting changes in commits. We describe an
approach, called Commit 2.0, to enrich commit comments
with software visualizations, which provides a visual context
to changes and facilitates their documentation.

2. OUR APPROACH
Commit 2.0 is an IDE enhancement which generates visu-

alizations of the changes at different granularity levels, and
let the user enrich them with annotations. The tool starts
when the developer wants to commit the code, i.e., when
she clicks the commit button. At this point, in addition to
the standard dialog where the developer can write the com-
ments, Commit 2.0 shows a coarse grained visualization of
the system which highlights the changes. The visualization
is automatically generated by comparing the last version of
the project in the repository with the local modified version.
The developer can interact with the visualization by inspect-
ing entities, moving figures, zooming in and out and, most
importantly, adding annotations. Annotations are rendered
as floating text boxes and can be placed by the developer
next to a modified entity to detail and comment the cor-
responding change. Moreover, the developer can select one
or more entities and spawn a fine grained visualization. As
with the coarse grained one, the developer can document the
changes in the fine grained view by adding an arbitrary num-
ber of annotations. Once the developer has completed the
documentation of the changes, with one annotated coarse
grained visualization and an arbitrary number of annotated
fined grained visualizations, she can complete the commit by
submitting the changes, the (traditional) comments if any,
and the annotated visualizations.

2.1 Example
Figure 1 shows two combined screenshots of Commit 2.0,

displaying an annotated coarse grained view on the left and
a fine grained one on the right. The screenshots were taken
while documenting the changes of the Spyware software sys-
tem (www.inf.usi.ch/phd/robbes/spyware.html). The coarse
grained visualization shows all the packages in the system
as rectangle figures, and within each rectangle all the classes

Figure 1: Two combined screenshots of Commit 2.0, showing comments for changes in the large (coarse
grained visualization) and detailing them in the small (fine grained visualization).

belonging to the corresponding packages are also depicted as
rectangle figures. The width of the rectangles representing
classes is proportional to the number of attributes, and the
height to the number of methods. The fine grained visual-
ization is a graph where nodes represent classes and edges
represent inheritance relationships. Within each node, all
the methods belonging to the corresponding class are repre-
sented as rectangle figures, where their height is proportional
to the number of lines of code. The view is generated from
a selection of packages and/or classes in the coarse grained
view. In Figure 1 the fine grained view was generated by
selecting all the classes that were modified in the coarse
grained view. In both views, the following color scheme
is applied to highlight the changes: Red represents deletion,
i.e., the corresponding entities (packages, classes, methods)
have been deleted ; Green represents addition, blue modifi-
cation and gray represents indirect changes (if an entity is
modified the container entity has an indirect change).

2.2 Discussion and Related Work
Commit 2.0 is developed in Smalltalk and is available for

the Pharo Smalltalk IDE (http://pharo-project.org). Unfor-
tunately, as other versioning systems (e.g., Cvs, Subversion,
Git, ClearCase), the one used in Smalltalk Pharo (called
Monticello) does not support the use of images to be at-
tached to commit comments. We solved this problem in the
following way: When the developer commits the code and
the annotated visualization, the code changes are sent as
usually to the versioning system, while the annotated views
are automatically published to a blog, having the version
number as title. To do this automatically we use Posterous
(http://posterous.com), which allows us to post blog entries
with images by sending e-mails. As a consequence, every
software system versioned using Commit 2.0 will have, in
addition to standard historical commit data, a blog with the
visual history of changes which can be used by developers
as a communication means.

The main benefit of Commit 2.0 is that it provides a visual
context to changes, which eases both their documentation
and understanding. To help the developer spotting all the
changes and to make the approach scalable, the views are in-

teractive, allowing the user to inspect entities, moving them
around and zooming in and out. The visualizations are kept
simple so that they are easy to learn and understand.

A number of approaches were introduced to visualize ver-
sioning system data, as for example the technique proposed
by Xie et al. [2]. The difference between these approaches
and Commit 2.0 is that they visualize the data a posteriori
to support retrospective analysis, while Commit 2.0 visual-
izes changes at commit time to support their documentation.
An approach which monitors change data at commit time
and checks whether it fulfills architectural constraints were
proposed by Knodel et al. [1]. Differently from Commit 2.0
this approach does not provide visualization and does not
support the documentation of changes.

3. CONCLUSION
In this paper we have proposed a visual approach, and the

corresponding implementation, to support the documenta-
tion of software changes at commit time. Our technique gen-
erates coarse and fine grained visualizations of the changes,
and let the developer enrich them with annotations. Since
images are not supported as comments in versioning sys-
tems, we create an alternative repository by means of a blog,
where we store the annotated visualizations. A development
team can use such a blog as a communication means.

In the future we plan to develop a version of Commit
2.0 for Eclipse and to conduct a user study to evaluate the
effectiveness of documenting changes with our tool.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science foundation
for the project “DiCoSA” (SNF Project No. 118063).

4. REFERENCES
[1] J. Knodel, D. Muthig, and D. Rost. Constructive

architecture compliance checking – an experiment on
support by live feedback. In Proceedings of ICSM 2008,
pages 287–296, 2008.

[2] X. Xie, D. Poshyvanyk, and A. Marcus. Visualization of
cvs repository information. In Proceedings of WCRE
2006, pages 231–242. IEEE CS, 2006.

	Introduction
	Our Approach
	Example
	Discussion and Related Work

	Conclusion
	References

