Effective Mining of Software Repositories

Marco D’ Ambros
REVEAL @ Faculty of Informatics
University of Lugano, Switzerland

I. SUMMARY

With the advent of open-source, the Internet, and the con-
sequent widespread adoption of distributed development tools,
such as software configuration management and issue tracking
systems, a vast amount of valuable information concerning
software development and evolution has become available.

Mining Software Repositories (MSR)—a very active and
interest-growing research field—deals with retrieving and an-
alyzing this data. Empirical analyses of software repositories
allow researchers to validate assumptions previously based
only on intuitions, as well as finding novel theories. In turn,
these theories about the software development phenomenon
have been translated into concrete approaches and tools that
support software developers and managers in their daily tasks.

In this tutorial, we provide an overview of the state of
the art of MSR. In particular, we describe what software
repositories are, what in turn Mining Software Repositories is,
what techniques are available to researchers and practitioners,
and finally, what the limitations of MSR are nowadays, and
how to fix them.

A. MSR Approaches

Based on the information available in software repositories,
a variety of studies have been performed, and techniques have
been proposed to assist the stakeholders of the development
process. We present a selection of MSR approaches, grouped
in categories. In each case, we explain not only the results of
the approach, but also how the evaluation was performed, in
great detail. The types of approaches we present are:

Empirical Studies. We demonstrate how one can use MSR
data to perform empirical studies by way of examples; we
then extract guidelines on performing empirical studies with
software repositories.

Change Prediction. Change prediction tackles the problem
of identifying entities in a software system that are likely to
change next. Software repositories act as both a data source
and an evaluation device for change prediction approaches.

Defect Prediction. In a world were resources are limited,
managers have to optimize the allocation of QA activities, as
they cannot afford to give equal attention to each and every
source code file. Defect prediction classifies files as potentially
defective by considering various attributes of the source code,
such as its complexity or its tendency to change.

Expertise and Bug Assignment. The information in defect
repositories can be used to model the knowledge of developers

Romain Robbes

PLEIAD @ Computer Science Department (DCC)

University of Chile, Chile

about the systems they work on. This can be used to recom-
mend a specific expert when help is needed over a particular
piece of code; a related problem is automatic bug assignment.
Code Search. With the massive amount of code freely
accessible on the Internet, there is a fair probability that a given
problem has been solved already, and that an implementation
is available somewhere. All that is needed, is to find it.
Visual Evolution Analysis. One way to understand the
large amount of data present in the history of a software
system is to visualize it. We present a selection of software
visualization tools and approaches that handle repository data,
and some of the case studies they were evaluated on.
Human Aspects. Software is built by humans, and for
humans. As such, taking the human element out of the loop
is not advisable. There is some research interest in exploiting
developer communication artifacts, such as emails and other
free-form text communications (chats, wikis, blogs).

B. Limitations of MSR

The amount of data available for MSR studies is a boon
for empirical research. However, this data comes with strings
attached. In this last part, we document the common threats to
the validity of empirical studies based on software repositories
data. We also go further, and highlight the shortcomings of the
current crop of software repositories for empirical research,
and discuss some of the possible solutions.

II. PRESENTERS

Marco D’Ambros earned his Ph.D. in October 2010 and
is currently a postdoctoral researcher at the University of
Lugano, Switzerland. He previously received MSc degrees
from both Politecnico di Milano (Italy) and the University of
Ilinois at Chicago. His research interests lie in the domain of
software engineering with a special focus on MSR, software
evolution, and software visualization. He authored more than
30 technical papers, and is the creator of several software
visualization and program comprehension tools.

Romain Robbes is an Assistant Professor at the University
of Chile. He earned his Ph.D. in December 2008, from the
University of Lugano, Switzerland and received his Master’s
degree from the University of Caen, France. His research
interests lie in Empirical Software Engineering and MSR. He
authored more than 30 papers on these topics, including top
software engineering venues (ICSE, ASE), and best paper
awards at WCRE 2009 and MSR 2011. He is program co-
chair of IWPSE-EVOL 2011, and the recipient of a Microsoft
SEIF award 2011.



