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SUMMARY

The analysis of the evolution of large software systems is challenging for many reasons, such as the
retrieval and processing of historical information and the large quantity of data that must be dealt with.
While recent research advances have led to solutions to these problems, a central question remains: How do
we deal with this information in a methodical way and where dowe start with our analysis?

We present a methodology based on interactive visualizations which support the reconstruction of
the evolution of software systems. We propose several visualizations which help us to perform software
evolution analysis of a system “in the large” and “in the small”, and apply them to 2 large systems.
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Introduction

Real world software systems require continuous change to satisfy new user requirements, adapt to
new technologies and repair errors [22]. As time goes by, software increases in size and complexity,
and the original design gradually decays unless maintenance work is done. Indeed, the problem of
understanding the evolution of software has become a vital matter in today’s software industry. Starting
in the early seventies, software evolution has in the meantime become a recognized research field. Its
goal is to use the history of a software system to analyse and understand its present state and to predict
its future development [4,14,15,23,28].

Apart from the technical challenges with respect to recovering and modeling the data, the main
challenge is how to deal with historical information in a useful and methodical way to understand
and reconstruct the phenomenon of evolution itself. Many people regard the history of a system
as being the information contained in a versioning system. But the evolution of a software system
is not only the collection of all the versions of its components: Developing software is a human
activity, and the evolution of a software system therefore also includes all the activities performed
by developers, testers and users during the entire history of the system. This additional information
comes from various sources such as comments committed by developers during the implementation,
problem reports delivered by users and stored in bug tracking systems, mailing list archives,etc.
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Acquiring a comprehensive understanding of a system’s evolution implies two major challenges:

1. Retrieving and handling the data. Once the data sources have been defined, the information hasto
be retrieved, processed and stored for the analysis. While some data sources provide information
in a structured way (Bugzilla, a widely used bug tracking system, for example provides problem
reports in XML), others need to be treated (for example the log files of CVS). Moreover, it is not
trivial to link the different sources. A problem report, forexample, refers to one or more software
artifacts developed with a versioning system. Since there is no explicit and formal link between
them, it must be established with data mining techniques.

2. Understanding the data. Once the information has been retrieved and stored, techniques are
needed to support its analysis and understanding. They mustbe able to deal with huge amounts
of complex data.

We propose a technique calledsoftware archeology[3] which, by means of various visualizations,
helps us to reconstruct the evolution of a software system ina methodical way. We omit the details on
the way we recover the data, but concentrate on the way we use the retrieved data. We perform software
archeology in two ways: (1) “in the large” to understand the overall structure and evolution of a system
in terms of its high-level components such as modules, and (2) “in the small” to understand the internal
structure of the modules, going from the directories down tothe level of file versions.

Software Archeology in a Nutshell.To reconstruct the evolution of a system, we need to retrieve
information about its history. We use as data sources the CVSand SubVersion versioning systems and
the Bugzilla and Issuezilla bug tracking systems. The first step of our approach consists in retrieving the
information from these data sources, parsing and storing itin a Release History Database [3,12]. Then
we use interactive visualizations with our BugCrawler tool[6], a major extension of CodeCrawler [20].
BugCrawler uses polymetric views [21] to represent artifacts (e.g.,modules, directories, files, bugs) and
relationships. We provide a set of views to support archeology in the large (to get an overview of the
whole system and the relationships between system modules)and in the small (to see the details of any
single system fragment). The visualizations are interactive, providing facilities like searching, zooming
and panning and our tool also provides navigation support tomake it possible for the user to quickly
jump back and forth between the views and easily reach the source code representation. The main idea
of our approach is to provide visualizations concerning several aspects of software evolution in order
to answer questions that the software “archeologist” may have, such as:

• Commit information: Which are the parts of the system with the most intense development?
Which are the stable/dead parts of the system? Which parts have grown/shrunk?

• Author information: How many developers worked on the entity? How was the effort distributed
among them? Is there an “owner” of the entity?

• Bugs: Which components are affected by many bugs? Which bugsaffect many components?
• Logical coupling: Which artifacts are most coupled?
• Conceptual entities: How has an entity evolved over time? When was it introduced in the system?

When did it generate many bugs? When did it have intense development?

In the following sections we present example visualizations to support for large-scale and small-scale
archeology. We apply the views on two large case studies, namely Mozilla (http://www.mozilla.org)
and Gimp (http://www.gimp.org), both well-known in the open source community.
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2 M. D’AMBROS AND M. LANZA

Figure 1. Two visualizations of the Mozilla modules. The color of the figures represents the number of bugs and
the size represents the number of files (view on the left) or the development effort (view on the right).

Software Archeology in the Large

Obtaining an Overview. The first goal is to get one’s bearings in a system as large as Mozilla. On the
left part of Figure 1 we see a simple visualization of figures representing all Mozilla modules, called
CVS module view. We consider a module as a collection of directories and files. This does not always
represent the internal organization of a system, but it allows us to get the module decomposition from
CVS (with the command “cvs co -c”) and thus to analyze all the systems developed using CVS in the
same way. The size of each figure represents the number of filescontained in the module and the color
represents the number of bugs affecting the module (the darker the figure, the greater the number of
bugs). This view helps to answer questions such as: Which arethe key modules in the system (big and
dark figures), how big are the modules with respect to each other, and where are the most bugs located?

From the left part of Figure 1 we see that there are two types ofmodules: The big modules affected by
many bugs (marked as 1, 2, 3, 4) and the small modules (all the others). The module SeaMonkeyCore
(marked as 1) is the biggest in terms of number of files (3266),while SeaMonkeyLayout (marked as 3)
is the most affected by bugs (29’412 bug references). To see how the development effort was distributed
among the modules, we can use a variation of this view, calledCVS revision module, where we map
the number of commits of each module to the corresponding figure size. The number of commits of a
module is equal to the sum of the number of commits of all the files contained in the module. This new
view applied on Mozilla (right part of Figure 1) gives us a result similar to the previous one. The four
biggest modules in terms of number of files are also the ones with the most intense development.

Taking Time into Account.So far we have obtained a mental picture of the current state of the system
and its history. In a sense we have looked at the system as a sumof its previous states. The next thing
we want to do is to obtain a picture of how the system has traversed time. We can do that by using a
visualization calledDiscrete Time Figure[5], which renders the history of an entity with respect to its
development intensity (the number of commits) and its problems (the number of bugs).

The principles of this visualization are shown in Figure 2(a): It has 2 subfigures, each of which is
composed of a sequence of rectangles, representing a discretization of time of the revisions and the
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(a) Principles of a Discrete Time Figure.

(b) TheDiscrete time module viewapplied to the Mozilla modules.

Figure 2. Visualizing the evolution of code and bugs with Discrete Time Figures.

bugs, respectively. Each rectangle is associated to a precise and parametrizable interval of time, where
2 vertically aligned rectangles having the same horizontalposition represent the same time period.
The rectangles are colored using a heat map,i.e., hot colors (in the red hue range) represent time
periods with many revisions (or many reported bugs), cold colors (in the blue hue range) represent few
commits (or few reported bugs). White rectangles representtime periods without development activity
or without reported bugs. Black rectangles represent the time intervals after the removal of the entity
from the system (the entity is “dead”).

Figure 2(b) shows theDiscrete time module view, displaying all Mozilla modules with this new
perspective. Since the time scale is the same for all the figures, we can understand which parts of the
system have changed more frequently, when these changes introduced many bugs and when modules
were added to / removed from the system. The development effort was mainly concentrated on the
modules SeaMonkeyLayout (3), RaptorLayout (4) and SeaMonkeyCore (1). During the observed time
many revisions were committed in these modules and many bugsrelated to them were reported,
indicated by the red rectangles in respectively the first andthe second row of each figure.
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Figure 3. TheModule bug-sharing correlation viewapplied to the Mozilla modules.

Modules marked as 2, 5, 6 and 7 have had an intense developmentwith many bugs, but in the last part
of the system history, their development tended to be less vigorous (blue rectangles on the right part
of the figures). For system restructuring purposes, the modules to focus on are the first three (3, 4 and
1) since they generated many bugs and they were heavily changed (many commits) during the entire
system lifetime and especially in the recent past. The underlying assumption is that components which
changed the most in the recent past are also likely to suffer important changes in the near future [15].
Other observable facts are: The modules marked as 9, 11, 12, 13 and 14 were removed from the system
(9, 11 and 13 at the same moment, implying a big change in the system). Moreover, only the modules
1, 2, 3, 4, 5, 8, and 10 were part of the system from the beginning and “survived” until the present.

Discovering Hidden DependenciesNow that we have an overview of the system and its history in
terms of the modules that compose it, we want to analyze the relationships between them. We use the
dependency of two entities sharing the same bug: A bug is shared by two entities when it affects both of
them,i.e.,when there is a link between the bug and each entity. The higher the number of shared bugs
is, the stronger the dependency between the two entities is.A strong dependency of this type between
modules could point to misplaced entities, very much in the spirit of logical coupling [13] (the implicit
dependency between software artifacts that frequently changed together during a system’s evolution).

In the visualization shown in Figure 3, calledModule bug-sharing correlation view, we see all
Mozilla modules as icons and the bug sharing dependencies asedges. The color of the modules is
proportional to the total number of commits of the files they contain, while the width and the color of
the edges is related to the number of shared bugs between the two connected modules. The thicker
and darker the edge is, the stronger the correlation is. In our tool it is possible to filter out the
dependencies characterized by a number of shared bugs belowa given threshold: We have done so
in the figure eliding edges representing less than 30 shared bugs. The 3 strongest dependencies are
between SeaMonkeyLayout and CalendarClient (1), between CalendarClient and RaptorLayout (2) and
between SeaMonkeyCore and RaptorDist (3). The first two havemore than 500 bugs in common while
the third one is characterized by more than 100 shared bugs. CalendarClient has dependencies with 6
other modules, where two of these dependencies are very strong. SeaMonkeyCore plays a central role
in the system: It is connected with 8 other modules, pointingto potential signs of architectural decay.

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2007;0:0–0
Prepared usingsmrauth.cls



VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 5

(a) TheDirectory tree view: a visualization of all the directories.

(b) TheFile size-effort-bug viewvisualizing the files contained in theapp/actions directory.

Figure 4. Two visualizations of Gimp.

Software Archeology in the Small

Software archeology “in the small” is aimed at understanding the internal structure and evolution of a
given module, a directory tree, even a single file or bug. In the following we present 4 visualizations
designed for archeology in the small activities.

Detecting Key Directories. In Figure 4(a) we see a visualization of all the directory hierarchies of
Gimp calledDirectory tree view. The height of the figures is proportional to the number of files
the corresponding directory directly contains (without considering the files contained in children
directories), the width is fixed and the color is proportional to the number of bugs. The view is aimed
at providing a first insight into the system (or a module) structure: Understanding which are the largest
sub-hierarchies, which ones contain many files and/or many recorded bugs. Of particular interest in
this visualization are (1) outliers,i.e.,figures different from the other figures in the same sub-hierarchy,
and (2) tall and dark figures representing directories whichcontain a lot of files affected by many bugs.

In the Directory tree viewshown in Figure 4(a) the hierarchyapp (marked as 1) is the biggest in
terms of number of files (2589) and number of bugs (2164). It contains the main application and it
is composed of directories characterized by an high number of files and bugs. To choose on which
directory or set of directories to continue the analysis, wecan apply theDiscrete time directory tree,
which uses Discrete Time Figures to represent directories in a tree layout, to study their evolution.
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6 M. D’AMBROS AND M. LANZA

Another view which can be applied, to study the developers effort, is theFractal directory tree, which
represents directory in a tree layout as Fractal Figures, explained in a following section.

The directories marked as 2 are the libraries, where the directory libgimp (marked as 3) is an
outlier with 275 files and 104 bugs. It should be further analyzed taking time into account (using
the Discrete Time Figure) and at the file granularity. The hierarchyplug-ins (marked as 4) is the
biggest in term of number of directories. Most of these directories contain one file only (the plug-in)
and 0 bugs, with some exceptions. Of particular interest arethe directoriesplug-ins/imagemap
(marked as 5) with 130 files and 48 bugs andplug-ins/common (marked as 6) with 159 files and
423 bugs. Imagemap is a complex plug-in, which is also used asunderlying engine by other plug-ins.
The following analysis at the file level should certainly focus on theplug-ins/common directory,
where the common behaviors and interfaces are implemented and where most of the problems related
to the plug-ins are located. This directory plays a crucial role for theplug-ins hierarchy.

Opening the Lid. After obtaining an idea of the structure and evolution of thedirectories, we may
want to have a look “under the hood” and examine their contents. In Figure 4(b) we see theFile size-
effort-bug viewvisualizing all the files belonging to theapp/actions directory of Gimp. Files are
represented as rectangle figures, mapping the number of commits on the figure width, the number of
lines of code (in the last version of the system) on the figure height and the number of bugs on the
figure color. The figures are sorted according to the width metric, i.e., the number of commits the
corresponding file has, because this facilitates the identification of outliers.

While the LOC metric refers to the last version of the system,the number of commits and bugs are
computed according to the entire history of the files, summarizing their evolution in a simple figure.
The view is helpful for detecting the biggest files (the tallest figures) that need to be refactored because
they generated many bugs (dark figures) and files which had an intense development (wide figures).
Tall and narrow figures represent big files with few commits. Such a pattern is due to copy-pasted
code or a late insertion of the file in the repository. However, to know which is the case we need to
look at the history and/or the source code of the file. The filecontext-actions.c (marked as 1
in Figure 4(b)) is characterized by this pattern (more than 1KLOC and 18 commits). Looking at its
history we found out that it was inserted late in the repository (in the last 1.5 years). Reading the source
code we discovered that the file contains only constant definitions, another reason which explains the
small number of commits. In Figure 4(b) we also have the opposite pattern: Wide and short figures,
representing files with few lines of code in the last version of the system, which passed through an
intense development. The filehelp-commands.c (marked as 4) has 20 LOC and 218 commits. The
inspection of the history of its source code revealed that itwas present from the first version of the
system and from that point on its size (in terms of LOC) has constantly decreased. At the beginning it
contained the implementation of all the actions of the help menu and then, over the history, more and
more menu item actions were moved to other files to whichhelp-commands.c delegates the calls.

The files most affected by bugs arelayers-commands.c (1 KLOC, 35 bugs) and
image-commands.c (600 LOC, 24 bugs), marked as 3 and 2 respectively.layers-commands.c
implements the actions present in the layer menu of Gimp, while image-commands.c implements
the image menu actions. The high number of bugs calls for a detailed inspection.

What about the Human Factor?The previous view provided an understanding of the evolution of files
from the point of view of commits and bugs. Now we also want to see how many developers worked
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(a) The structural principles of a Fractal Figure.

(b) TheFractal file view: Fractal Figures applied to Gimp files.

Figure 5. Visualizing development effort with Fractal Figures.

on the files and how the development effort was distributed among them. We can do that by using a
specific visualization calledFractal Figure [8]. A Fractal Figure is composed of a set of rectangles
having different sizes and colors. Each rectangle, and eachcolor, is mapped to an author who worked
on the artifact. The area of the rectangle is proportional tothe percentage of commits performed by
the author over the whole set of commits. Fractal Figures canbe enriched by rendering a software
metric measurement on their size. Looking at a Fractal Figure (see Figure 5(a)) we can easily figure
out whether the development was done mainly by one author or many people contributed to it and in
which terms. Fractal Figures are similar to slice-and-dicetreemaps [25] which recursively partition
the planar display area along both dimensions, alternatively vertically and horizontally. Fractal Figures
allow the definition of four different patterns [8] (one developer, few balanced developers, one major
developer and many balanced developers), according to thegestaltprinciple, with which the user can
immediately understand how the development effort was distributed among the authors.

Figure 5(b) shows theFractal file view, a visualization of all the files belonging to the
app/actions directory of Gimp. The view shows the same entities of the visualization shown in
Figure 4(b), but from a different perspective: The developer contributions. Files are represented as

Copyright c© 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2007;0:0–0
Prepared usingsmrauth.cls
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Figure 6. Detailing dependencies in Mozilla with theDirectory bug dependency view.

Fractal Figures, where the size of each figure is proportional to the number of bugs the corresponding
file is affected by. The view is aimed at understanding how thedevelopment effort is distributed among
the different authors, according to the code ownership principle. Is there an author mainly responsible
for the development of the files? Or is the development effortequally distributed on many authors? Do
most of the files have the same development pattern?

In the directoryapp/actions of Gimp (see Figure 5(b)) most of the files have the same pattern.
The author related to the blue color (mitch, as shown in the legend in the right part) is mainly
responsible for their development. This information should be carefully interpreted. There is no one-
to-one mapping between developers and CVS accounts: A developer can have multiple CVS accounts
and a CVS account can “hide” several developers behind it. Inthe situation shown in Figure 5(b) it can
either be thatmitchdeveloped most of theapp/actions code ormitch is a “proxy”, i.e.,an author
who is responsible to collect patches and commit them to the repository. This is a common practice for
open source projects, where the write permission to the repository is given to few people and patches
are sent to them via e-mail. To verify whethermitchwas a proxy, we contacted him and discovered that
he is actually Gimp’s main developer, responsible for most of theapp code.

Detailing Hidden Dependencies.The last activity in the large we have presented was discovering
hidden dependencies among modules, based on bug-sharing. Now we want to zoom-in onto these
dependencies and see the details about bug-sharing: Which low-level entities share bugs and which
bugs have the biggest impact? We do that by means of theDirectory bug dependency view, shown in
Figure 6. A set of directories are placed within a grid. For each directory, all its bugs are positioned
around it in a circle. The directories are represented as folders, the bugs as crosses. The color of the
bugs maps the bug owner information: The same color represents the same owner. Bugs with multiple
edges are shared bugs: The greater the number of edges, the more directories are sharing the bug.

The visualization shows two interesting facts: “Self-contained” directories and bugs linked with
many directories. Self-contained directories are characterized by not sharing bugs or by having a small
amount of shared bugs (with respect to the entire set of bugs). They are likely to encapsulate specific
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Figure 7. A general schema of our visual software evolution reconstruction approach. The schema suggests which
view should be applied according to the goal we want to achieve.

data or responsibilities, especially if the number of different bug owners is small. Examples of this
pattern are the directories marked as 2 in Figure 6 (not sharing bugs) and the directory marked as 1,
which has 6 shared bugs on a total of 90. The directory marked as 1 needs to be further analyzed at
the file level, given the high number of bugs, while the directories marked as 2 do not need further
inspection, since they are affected by two or three bugs only. Bugs linked with many directories point
to hidden dependencies between the directories and to potentially misplaced files. Looking at their
description and comment fields is useful to understand the directories’ responsibilities and the reasons
why they are shared. The two bugs marked as31 and32 in Figure 6 are respectively shared by four and
five directories. Reading the bug comments we discovered that the problems are related to: “A virtual
function that should not be virtual” for the bug marked as31 and “A general purpose stack which
creates a lot of confusion” for the bug marked as32. Since the bug status field is “fixed” for both the
bugs, we found also the patches for these problems (patches are part of our bug metamodel, and they
can be reached from the context menu displayed when clickingon a bug figure). The same visualization
can be applied at the file level with the same principles, substituting directories with files.

Methodology and Tool Implementation

Methodology. Figure 7 shows an overview of our approach to reconstruct theevolution of a software
system. The schema is a graph in which each node is a particular visualization (or set of visualizations)
and an edge going from the nodeA to the nodeB with labelL indicates that from viewA, to achieve
the goal described inL we should apply the viewB. The schema is not strict: For example, the fact that
from a nodeC to a nodeD there is no edge, does not mean that it is not possible to applythe viewD

from C. Figure 7 shows the most common “path” according to our experience in using the tool. Such
a schema is useful for new users, who are learning how to use and interpret the different visualizations
to reconstruct the evolution of a system.
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10 M. D’AMBROS AND M. LANZA

Figure 8. BugCrawler in action: The window on the top left is showing aDirectory Treevisualization and from a
selected directory aFile size-effort-bugview is spawned, visualizing all the files contained in the directory.

Tool Implementation. Our environment for visual software evolution reconstruction is composed
of the importers, the Release History Database (RHDB) and BugCrawler. Both the importers
and BugCrawler are written in Smalltalk. The importers retrieve the data from CVS/SubVersion
repositories and Bugzilla/Issuezilla bug tracking systems, parse and process it (e.g.,link CVS artifacts
with Bugzilla problem reports) and store it on the RHDB. The importers are accessible from a web
interface, part of the Churrasco framework [7], where all the pieces of information needed to run
the importers are the url of the repository and/or bug database. Once a repository is imported, it is
automatically and periodically updated. The time requiredto import and process a CVS repository or a
Bugzilla database mostly depends on the time needed to checkout the repository or download the bug
reports. Checking out the entire Mozilla CVS repository took about 2 hours, while downloading more
that 160’000 Mozilla bug reports took more than 40 hours. Parsing and processing the data (CVS log
files and bug reports) took less than 1 hour.

Figure 8 shows BugCrawler “in action”: Each window renders avisualization: The one on the top
left is aDirectory tree, the second one is aFile size-effort-bug(a visualization of all the files contained
in a directory selected in the first view). Navigating between views is possible through context menus:
The menu items depend on the entity represented by the selected figures. For example the menu of a
directory allows the rendering of views for the files it contains.

BugCrawler provides flexibility to the user, by allowing him/her to customize the views parameters
(e.g.,figures, layouts, metrics mapping) and to design new visualizations on-the-fly. However, for non
expert users, an extensive set of predefined visualizationsis available, and these can be applied by
just selecting a menu item. Scalability is provided by usingvisualizations in the large to see the entire
system, and then by focusing on the interesting parts with views in the small. The visualizations in the
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tool are interactive: It is possible to inspect any entity inthe visualization and to reach its original data
source (source file, problem report) using context menus.

Related Work

Visualization has long been used in software evolution research to break down the data quantity and
complexity [2, 17, 19, 24, 26, 28]. Many approaches considerdifferent releases of a software system
(snapshots) and visualize their history and their differences. Jazayeriet al. in [19] used a three-
dimensional visual representation for analyzing a software system’s release history. In [18] Jazayeri
proposed a retrospective analysis technique to evaluate architectural stability, based on the use of colors
to depict changes in different releases. In [27], Tu and Godfrey proposed an approach which integrates
the use of metrics, software visualization and origin analysis for studying software evolution. Girba
et al. used the notion of history to analyze how changes appear in the software systems [15] and
succeeded in visualizing the histories of evolving class hierarchies [17]. The main difference between
these approaches and ours is that we consider the fine-grained history of a software system,i.e.,all the
versions of all the software artifacts, while the listed techniques consider snapshots of the system.

Another approach to software evolution visualization consists in retrieving the history of a software
system from versioning system log files. Ball and Eick [1] focused on the visualization of different
source code evolution statistics such as code version history, difference between releases, static
properties of code, code profiling and execution hot spots, and program slices. Taylor and Munro [26]
used visualization together with animation to study the evolution of a CVS repository. The technique,
called revision towers, allows the user to find out where the active areas of the project are and how
work is shared out across the project. Rysselberghe and Demeyer [28] used a simple visualization
of CVS data to recognize relevant changes in the software system such as: (1) unstable components,
(2) coherent entities, (3) design and architectural evolution, and (4) fluctuations in team productivity.
In [32] Wu et al.used the spectograph metaphor to visualize how changes occur in software systems.
Girbaet al.[16] analyze how developers drive software evolution by visualizing code ownership based
on information extracted from CVS log files.

A number of approaches use information from both different releases of a software system and
versioning system log files. The EvoGraph visualization [11] combines release history data and source
code changes to assess structural stability and recurring modifications. Pinzgeret al. [24] proposed
a visualization technique based on Kiviat diagrams which provides integrated views on source code
metrics in different releases together with coupling information computed from CVS log files. Collberg
et al.proposed a graph drawing technique for visualization of large graphs with temporal component,
with the aim of understanding the evolution of legacy software [2]. The main difference between the
mentioned approaches and ours is that these visualizationsdo not provide bug related information,
while our visualizations integrate CVS log file and bug report data. Voinea and Telea [30] proposed the
CVSgrab tool which supports querying, analysis and visualization of CVS based software repositories,
integrating also Bugzilla information. Their tool allows the user to produce views, to interact with
them, to do querying and filtering and to customize the view through a rich set of metrics computed
from the CVS data. They applied CVSgrab to assess change propagation of buggy files [29]. The
same authors in [31] proposed several visualization techniques (and the corresponding tools), with the
aim of supporting software engineers manage the evolution of large and complex software systems. A
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point in favour of their toolset, with respect to ours, is that it covers a wide granularity spectrum,
from the evolution of the entire system / subsystem level, down to the evolution of single lines
of code, while our finest granularity is at the level of files. Adifference to BugCrawler is that it
supports different evolutionary perspectives using different figures (e.g.,Fractal Figures for the author
perspective) and layouts, while in Voinea and Telea toolsetthis is supported by changing the color
scheme, superimposing another visualization layer and using clustering.

Ducasseet al. proposed a general visualization technique, called Distribution map [9], to analyze
how properties are distributed in a software system. A benefit of this technique over BugCrawler is
its generality, since it is applicable to any property. In [10] Ducasseet al. introduced the Package
surface blueprint, a visualization approach to study the relationships among the packages of a system.
The main difference with our approach is that they address specifically the problem of understanding
package relationships, rendering packages and classes, while we study various perspectives of software
evolution, visualizing modules, directories, files and bugs.

Conclusion

We have presented a visual approach for reconstructing the evolution of a software system which
relies on information residing in versioning systems and bug tracking systems. We discussed several
visualizations aimed at understanding the various aspectsof the evolution of a system. The technique
supports the analysis of a system’s history “in the large” and “in the small”. Our approach features
many additional visualizations that we did not list becauseof space reasons, which can be found in [3].

The main contribution of this paper, in particular with respect to previously published work
presenting some of the visualization techniques used here [5, 8], is that it addresses the problem
of understanding software evolution “in the large”,i.e., starting from just a CVS (or SubVersion)
repository and a Bugzilla (or Issuezilla) database, considering various aspects of the system’s evolution,
and going down to the single file history. In this paper we alsoproposed a methodology which provides
a systematical way to address the problem of understanding software evolution. It allows the software
archeologist to get a complete picture of the evolution of a software system, by combining several
aspects of the evolution of its components.
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