Research

Visual Software Evolution
Reconstruction

Marco D’Ambrog, Michele Lanza

'REVEAL @ Faculty of Informatics - University of Lugano, Sefitand

SUMMARY

The analysis of the evolution of large software systems is allenging for many reasons, such as the
retrieval and processing of historical information and thelarge quantity of data that must be dealt with.
While recent research advances have led to solutions to theproblems, a central question remains: How do
we deal with this information in a methodical way and where dowe start with our analysis?

We present a methodology based on interactive visualizatis which support the reconstruction of
the evolution of software systems. We propose several vidimations which help us to perform software
evolution analysis of a system “in the large” and “in the small’, and apply them to 2 large systems.

KEY WORDS. Software Evolution Analysis, Software Visualization

Introduction

Real world software systems require continuous changettsfysmew user requirements, adapt to
new technologies and repair errors [22]. As time goes bywsoé increases in size and complexity,
and the original design gradually decays unless maintenaock is done. Indeed, the problem of
understanding the evolution of software has become a vattlamin today’s software industry. Starting
in the early seventies, software evolution has in the meankiecome a recognized research field. Its
goal is to use the history of a software system to analyse addrstand its present state and to predict
its future development [4, 14,15, 23, 28].

Apart from the technical challenges with respect to redogeand modeling the data, the main
challenge is how to deal with historical information in a fuseand methodical way to understand
and reconstruct the phenomenon of evolution itself. Mangpfe regard the history of a system
as being the information contained in a versioning systent.tBe evolution of a software system
is not only the collection of all the versions of its compotserDeveloping software is a human
activity, and the evolution of a software system therefdse @ncludes all the activities performed
by developers, testers and users during the entire hisfalyeasystem. This additional information
comes from various sources such as comments committed l®jogevs during the implementation,
problem reports delivered by users and stored in bug trgaystems, mailing list archivestc.

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 1

Acquiring a comprehensive understanding of a system’suéienl implies two major challenges:

1. Retrieving and handling the dat®nce the data sources have been defined, the informatido has
be retrieved, processed and stored for the analysis. Wiihe slata sources provide information
in a structured way (Bugzilla, a widely used bug trackingess for example provides problem
reports in XML), others need to be treated (for example tiydiles of CVS). Moreover, it is not
trivial to link the different sources. A problem report, Example, refers to one or more software
artifacts developed with a versioning system. Since trenmiexplicit and formal link between
them, it must be established with data mining techniques.

2. Understanding the dataOnce the information has been retrieved and stored, tqubgeiare
needed to support its analysis and understanding. Theylmuable to deal with huge amounts
of complex data.

We propose a technique callsdftware archeologi3] which, by means of various visualizations,
helps us to reconstruct the evolution of a software systeannethodical way. We omit the details on
the way we recover the data, but concentrate on the way wéesettieved data. We perform software
archeology in two ways: (1) “in the large” to understand therall structure and evolution of a system
in terms of its high-level components such as modules, ariih(the small” to understand the internal
structure of the modules, going from the directories dowthéolevel of file versions.

Software Archeology in a Nutshell.To reconstruct the evolution of a system, we need to retrieve
information about its history. We use as data sources the &SSubVersion versioning systems and
the Bugzilla and Issuezilla bug tracking systems. The fiegi of our approach consists in retrieving the
information from these data sources, parsing and storingitRelease History Database [3,12]. Then
we use interactive visualizations with our BugCrawler {6 a major extension of CodeCrawler [20].
BugCrawler uses polymetric views [21] to represent antifée.g.,modules, directories, files, bugs) and
relationships. We provide a set of views to support archgoio the large (to get an overview of the
whole system and the relationships between system modaridsh the small (to see the details of any
single system fragment). The visualizations are intevacfiroviding facilities like searching, zooming
and panning and our tool also provides navigation suppartdke it possible for the user to quickly
jump back and forth between the views and easily reach thes@ode representation. The main idea
of our approach is to provide visualizations concerningesgvaspects of software evolution in order
to answer questions that the software “archeologist” mag hsuch as:

e Commit information: Which are the parts of the system with thost intense development?
Which are the stable/dead parts of the system? Which partsgrawn/shrunk?

e Author information: How many developers worked on the gftlow was the effort distributed
among them? Is there an “owner” of the entity?

e Bugs: Which components are affected by many bugs? Which &ffget many components?

e Logical coupling: Which artifacts are most coupled?

e Conceptual entities: How has an entity evolved over time®h\has it introduced in the system?
When did it generate many bugs? When did it have intense agweint?

In the following sections we present example visualizatimrsupport for large-scale and small-scale
archeology. We apply the views on two large case studiesglyaitozilla (http://www.mozilla.org)
and Gimp (http://www.gimp.org), both well-known in the epgource community.

Copyright(©) 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingsmrauth.cls

2 M. D’AMBROS AND M. LANZA

= i

1 3
CVS module view CVS revision module view

Figure 1. Two visualizations of the Mozilla modules. Thearadf the figures represents the number of bugs and
the size represents the number of files (view on the left) @dgvelopment effort (view on the right).

Software Archeology in the Large

Obtaining an Overview. The first goal is to get one’s bearings in a system as large adl®dn the
left part of Figure 1 we see a simple visualization of figurgsresenting all Mozilla modules, called
CVS module viewwe consider a module as a collection of directories and fileis does not always
represent the internal organization of a system, but itxalos to get the module decomposition from
CVS (with the command “cvs co -¢”) and thus to analyze all tystesms developed using CVS in the
same way. The size of each figure represents the number afdifeained in the module and the color
represents the number of bugs affecting the module (thesd#nk figure, the greater the number of
bugs). This view helps to answer questions such as: Whictihareey modules in the system (big and
dark figures), how big are the modules with respect to eadtradind where are the most bugs located?
From the left part of Figure 1 we see that there are two typesoafules: The big modules affected by
many bugs (marked as 1, 2, 3, 4) and the small modules (alltttegs). The module SeaMonkeyCore
(marked as 1) is the biggest in terms of number of files (328bi)le SeaMonkeylLayout (marked as 3)
is the most affected by bugs (29'412 bug references). Toeaete development effort was distributed
among the modules, we can use a variation of this view, c&l8 revision modujevhere we map
the number of commits of each module to the correspondingdigize. The number of commits of a
module is equal to the sum of the number of commits of all tles filontained in the module. This new
view applied on Mozilla (right part of Figure 1) gives us auksimilar to the previous one. The four
biggest modules in terms of number of files are also the ontbstixé most intense development.

Taking Time into Account. So far we have obtained a mental picture of the current sfakeystem
and its history. In a sense we have looked at the system as afstsprevious states. The next thing
we want to do is to obtain a picture of how the system has tsaeetime. We can do that by using a
visualization callediscrete Time Figurg5], which renders the history of an entity with respect f it
development intensity (the number of commits) and its @otd (the number of bugs).

The principles of this visualization are shown in Figure)2({ghas 2 subfigures, each of which is
composed of a sequence of rectangles, representing atthation of time of the revisions and the

Copyright(©) 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingsmrauth.cls

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 3

Bugs Revisions
Eliefore Birth High prodyction Dead :|
s 2 v ¥

: 1 t
Birth Low production No production

Time

(a) Principles of a Discrete Time Figure.

3/26/36 7/4700 /8102 IGE 3/28/38 7700 160z 11713004
[EnnN}
o

’glllllllllll-llllllllllllllllllllﬂ

(b) TheDiscrete time module vieapplied to the Mozilla modules.

Figure 2. Visualizing the evolution of code and bugs withdbéte Time Figures.

bugs, respectively. Each rectangle is associated to asgrand parametrizable interval of time, where
2 vertically aligned rectangles having the same horizopésition represent the same time period.
The rectangles are colored using a heat map, hot colors (in the red hue range) represent time
periods with many revisions (or many reported bugs), coldrsdin the blue hue range) represent few
commits (or few reported bugs). White rectangles reprasmetperiods without development activity
or without reported bugs. Black rectangles represent the tntervals after the removal of the entity
from the system (the entity is “dead”).

Figure 2(b) shows th®iscrete time module viewdisplaying all Mozilla modules with this new
perspective. Since the time scale is the same for all thedigguve can understand which parts of the
system have changed more frequently, when these changedloéd many bugs and when modules
were added to / removed from the system. The development @ffss mainly concentrated on the
modules SeaMonkeyLayout (3), RaptorLayout (4) and Sealdg@kre (1). During the observed time
many revisions were committed in these modules and many frigted to them were reported,
indicated by the red rectangles in respectively the firsttaedecond row of each figure.

Copyright(©) 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingsmrauth.cls

4 M. D’AMBROS AND M. LANZA

Figure 3. TheModule bug-sharing correlation vieapplied to the Mozilla modules.

Modules marked as 2, 5, 6 and 7 have had an intense developitiertany bugs, but in the last part
of the system history, their development tended to be legsrous (blue rectangles on the right part
of the figures). For system restructuring purposes, the teeda focus on are the first three (3, 4 and
1) since they generated many bugs and they were heavily eldangany commits) during the entire
system lifetime and especially in the recent past. The upidgrassumption is that components which
changed the most in the recent past are also likely to suffpoitant changes in the near future [15].
Other observable facts are: The modules marked as 9, 113Bhdl14 were removed from the system
(9, 11 and 13 at the same moment, implying a big change in tstersy. Moreover, only the modules
1,2,3,4,5, 8, and 10 were part of the system from the begireninal “survived” until the present.

Discovering Hidden DependencieNow that we have an overview of the system and its history in
terms of the modules that compose it, we want to analyze thBaeships between them. We use the
dependency of two entities sharing the same bug: A bug igdhgrtwo entities when it affects both of
them,i.e.,when there is a link between the bug and each entity. The htgpenumber of shared bugs
is, the stronger the dependency between the two entitidsssong dependency of this type between
modules could point to misplaced entities, very much in figtof logical coupling [13] (the implicit
dependency between software artifacts that frequentiggédnditogether during a system'’s evolution).

In the visualization shown in Figure 3, callédodule bug-sharing correlation viewve see all
Mozilla modules as icons and the bug sharing dependenciedgess. The color of the modules is
proportional to the total number of commits of the files theptain, while the width and the color of
the edges is related to the number of shared bugs betweewaheohnected modules. The thicker
and darker the edge is, the stronger the correlation is. ntaal it is possible to filter out the
dependencies characterized by a number of shared bugs beajpwen threshold: We have done so
in the figure eliding edges representing less than 30 shargsl fhe 3 strongest dependencies are
between SeaMonkeyLayoutand CalendarClient (1), betwaén@arClient and RaptorLayout (2) and
between SeaMonkeyCore and RaptorDist (3). The first two hrawe than 500 bugs in common while
the third one is characterized by more than 100 shared badsn@arClient has dependencies with 6
other modules, where two of these dependencies are vengstB@aMonkeyCore plays a central role
in the system: It is connected with 8 other modules, pointiingotential signs of architectural decay.

Copyright(©) 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingsmrauth.cls

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 5

w—f

(a) TheDirectory tree viewa visualization of all the directories.

WIHWMWWWM

.1

L B

(b) TheFile size-effort-bug viewisualizing the files contained in ttegpp/ act i ons directory.

Figure 4. Two visualizations of Gimp.

Software Archeology in the Small

Software archeology “in the small” is aimed at understagdire internal structure and evolution of a
given module, a directory tree, even a single file or bug. &nftllowing we present 4 visualizations
designed for archeology in the small activities.

Detecting Key Directories. In Figure 4(a) we see a visualization of all the directoryriiehies of
Gimp calledDirectory tree view The height of the figures is proportional to the number ofsfile
the corresponding directory directly contains (withouhsidering the files contained in children
directories), the width is fixed and the color is proporticiwahe number of bugs. The view is aimed
at providing a first insight into the system (or a module)atinee: Understanding which are the largest
sub-hierarchies, which ones contain many files and/or meogrded bugs. Of particular interest in
this visualization are (1) outlierse.,figures different from the other figures in the same sub-hibrg
and (2) tall and dark figures representing directories whatftain a lot of files affected by many bugs.
In the Directory tree viewshown in Figure 4(a) the hierarclapp (marked as 1) is the biggest in
terms of number of files (2589) and number of bugs (2164). fitaios the main application and it
is composed of directories characterized by an high numbéiles and bugs. To choose on which
directory or set of directories to continue the analysis,cam apply theDiscrete time directory tree
which uses Discrete Time Figures to represent directories tree layout, to study their evolution.

Copyright(©) 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingsmrauth.cls

6 M. D’AMBROS AND M. LANZA

Another view which can be applied, to study the developdsteis theFractal directory tree which
represents directory in a tree layout as Fractal Figurgdaaed in a following section.

The directories marked as 2 are the libraries, where thetdingl i bgi np (marked as 3) is an
outlier with 275 files and 104 bugs. It should be further amatlytaking time into account (using
the Discrete Time Figure) and at the file granularity. Thedrehypl ug- i ns (marked as 4) is the
biggest in term of number of directories. Most of these ddes contain one file only (the plug-in)
and 0 bugs, with some exceptions. Of particular interesthealirectoriepl ug-i ns/ i magemap
(marked as 5) with 130 files and 48 bugs qridug- i ns/ common (marked as 6) with 159 files and
423 bugs. Imagemap is a complex plug-in, which is also useshdsrlying engine by other plug-ins.
The following analysis at the file level should certainly iescon thepl ug- i ns/ cormon directory,
where the common behaviors and interfaces are implementkd/iaere most of the problems related
to the plug-ins are located. This directory plays a cru@é#d for thepl ug- i ns hierarchy.

Opening the Lid. After obtaining an idea of the structure and evolution of directories, we may
want to have a look “under the hood” and examine their costéntFigure 4(b) we see tHéle size-
effort-bug viewvisualizing all the files belonging to theppp/ act i ons directory of Gimp. Files are
represented as rectangle figures, mapping the number of tsmmmthe figure width, the number of
lines of code (in the last version of the system) on the figuwight and the number of bugs on the
figure color. The figures are sorted according to the widthrimete., the number of commits the
corresponding file has, because this facilitates the ifiestion of outliers.

While the LOC metric refers to the last version of the systtra,number of commits and bugs are
computed according to the entire history of the files, sunmimay their evolution in a simple figure.
The view is helpful for detecting the biggest files (the tstiliigures) that need to be refactored because
they generated many bugs (dark figures) and files which hadtanse development (wide figures).
Tall and narrow figures represent big files with few commitgciSa pattern is due to copy-pasted
code or a late insertion of the file in the repository. Howeteknow which is the case we need to
look at the history and/or the source code of the file. Thecfidat ext - act i ons. ¢ (marked as 1
in Figure 4(b)) is characterized by this pattern (more thafL. OC and 18 commits). Looking at its
history we found out that it was inserted late in the repogifm the last 1.5 years). Reading the source
code we discovered that the file contains only constant diefiisi another reason which explains the
small number of commits. In Figure 4(b) we also have the oppgsttern: Wide and short figures,
representing files with few lines of code in the last versiéthe system, which passed through an
intense development. The fiteel p- commands. ¢ (marked as 4) has 20 LOC and 218 commits. The
inspection of the history of its source code revealed thatit present from the first version of the
system and from that point on its size (in terms of LOC) hasstanmtly decreased. At the beginning it
contained the implementation of all the actions of the hedmmand then, over the history, more and
more menu item actions were moved to other files to whiehp- conmands. ¢ delegates the calls.

The files most affected by bugs ardeayers-commands.c (1 KLOC, 35 bugs) and
i mage- conmands. ¢ (600 LOC, 24 bugs), marked as 3 and 2 respectively.er s- commands. ¢
implements the actions present in the layer menu of Gimplewhmage- cormands. ¢ implements
the image menu actions. The high number of bugs calls forailddtinspection.

What about the Human Factor?The previous view provided an understanding of the evahutidiles
from the point of view of commits and bugs. Now we also wantée Bow many developers worked

Copyright(©) 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingsmrauth.cls

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 7

Size me! tric

Empty Fractal Direction § Direction — Complete Fractal

Figure Area =5/14 Area=2/14

Figure

(a) The structural principles of a Fractal Figure.

HEIIEN INEEEEEE R iz

M neo
ﬁ adrian
. mitch
. scott
[yosh
ey
|:| amundsan
|:| akkana
. raph
. sopwith

(b) TheFractal file view Fractal Figures applied to Gimp files.

Figure 5. Visualizing development effort with Fractal Figs.

on the files and how the development effort was distributedrajthem. We can do that by using a
specific visualization calle#fractal Figure [8]. A Fractal Figure is composed of a set of rectangles
having different sizes and colors. Each rectangle, and esaloh, is mapped to an author who worked
on the artifact. The area of the rectangle is proportiondh&percentage of commits performed by
the author over the whole set of commits. Fractal Figuresbtmaenriched by rendering a software
metric measurement on their size. Looking at a Fractal Eigsee Figure 5(a)) we can easily figure
out whether the development was done mainly by one authoranyrpeople contributed to it and in
which terms. Fractal Figures are similar to slice-and-dieemaps [25] which recursively partition
the planar display area along both dimensions, alterrgtistically and horizontally. Fractal Figures
allow the definition of four different patterns [8] (one dévger, few balanced developers, one major
developer and many balanced developers), according tgetstaltprinciple, with which the user can
immediately understand how the development effort wasidiged among the authors.

Figure 5(b) shows theFractal file view a visualization of all the files belonging to the
app/ act i ons directory of Gimp. The view shows the same entities of th@aligation shown in
Figure 4(b), but from a different perspective: The devetagmntributions. Files are represented as

Copyright(©) 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingsmrauth.cls

8 M. D’AMBROS AND M. LANZA

Figure 6. Detailing dependencies in Mozilla with thé&ectory bug dependency view

Fractal Figures, where the size of each figure is proportimnte number of bugs the corresponding
file is affected by. The view is aimed at understanding howdéheslopment effort is distributed among
the different authors, according to the code ownershipcipla. Is there an author mainly responsible
for the development of the files? Or is the development effquially distributed on many authors? Do
most of the files have the same development pattern?

In the directoryapp/ act i ons of Gimp (see Figure 5(b)) most of the files have the same patter
The author related to the blue colamifch as shown in the legend in the right part) is mainly
responsible for their development. This information skidag carefully interpreted. There is no one-
to-one mapping between developers and CVS accounts: Aaferatan have multiple CVS accounts
and a CVS account can “hide” several developers behindtihdrsituation shown in Figure 5(b) it can
either be thatitchdeveloped most of thapp/ act i ons code ormitchis a “proxy’, i.e.,an author
who is responsible to collect patches and commit them togpegitory. This is a common practice for
open source projects, where the write permission to thesigpy is given to few people and patches
are sent to them via e-mail. To verify whethmeitchwas a proxy, we contacted him and discovered that
he is actually Gimp’s main developer, responsible for mbést@app code.

Detailing Hidden DependenciesThe last activity in the large we have presented was disaayer
hidden dependencies among modules, based on bug-shaomgwi want to zoom-in onto these
dependencies and see the details about bug-sharing: Wiviclevel entities share bugs and which
bugs have the biggest impact? We do that by means dbiteetory bug dependency vieshown in
Figure 6. A set of directories are placed within a grid. Farhedirectory, all its bugs are positioned
around it in a circle. The directories are represented akefs| the bugs as crosses. The color of the
bugs maps the bug owner information: The same color repie@asame owner. Bugs with multiple
edges are shared bugs: The greater the number of edges, thelinectories are sharing the bug.

The visualization shows two interesting facts: “Self-@ned” directories and bugs linked with
many directories. Self-contained directories are charamd by not sharing bugs or by having a small
amount of shared bugs (with respect to the entire set of bligsy are likely to encapsulate specific

Copyright(©) 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingsmrauth.cls

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 9

Discrete time Understand file

module evolution
) 5 Discrete time file
Discrete time

directory tree
Understand module Understand directory
evolution relationships /
Detect logical coupling

First contact Understand module
for large system CVS Module relationships Module Detailing module D'ZW,‘O'V bugl' . Detailing directory
CVS Revision Detect logical bug-sharing __ relationships __ sharing corre| lation "o ationships File bug-sharing correlation

Module coupling correlation Directory !
//" bug dependency File bug dependency
Understand directory ngerstand directory
Understand module evolution relationships
structure ‘
Understand file
First contact "> Directory tree Understand directory il

|
Understand module Understand directory
developer contributions ~ developer contribution

structure > File size-effort-bug —
Understand file
. developer contribution,, £, 1/ fife
Fractal directory
tree ‘w

Figure 7. A general schema of our visual software evolutemonstruction approach. The schema suggests which
view should be applied according to the goal we want to aehiev

data or responsibilities, especially if the number of diéf@ bug owners is small. Examples of this
pattern are the directories marked as 2 in Figure 6 (notishdmigs) and the directory marked as 1,
which has 6 shared bugs on a total of 90. The directory markedreeeds to be further analyzed at
the file level, given the high number of bugs, while the dioeiets marked as 2 do not need further
inspection, since they are affected by two or three bugs &ugs linked with many directories point
to hidden dependencies between the directories and to tihemisplaced files. Looking at their
description and comment fields is useful to understand tteetdiries’ responsibilities and the reasons
why they are shared. The two bugs markeaand3, in Figure 6 are respectively shared by four and
five directories. Reading the bug comments we discoverddhibaroblems are related to: “A virtual
function that should not be virtual” for the bug marked3sand “A general purpose stack which
creates a lot of confusion” for the bug marked3asSince the bug status field is “fixed” for both the
bugs, we found also the patches for these problems (patcheme of our bug metamodel, and they
can be reached from the context menu displayed when clickiragbug figure). The same visualization
can be applied at the file level with the same principles, tiuitieg directories with files.

Methodology and Tool Implementation

Methodology. Figure 7 shows an overview of our approach to reconstruabhition of a software
system. The schema is a graph in which each node is a partigsilglization (or set of visualizations)
and an edge going from the nodeto the nodeB with label L indicates that from viewA, to achieve
the goal described ih we should apply the vieu8. The schema is not strict: For example, the fact that
from a nodeC to a nodeD there is no edge, does not mean that it is not possible to applyiew D
from C. Figure 7 shows the most common “path” according to our égpee in using the tool. Such

a schema is useful for new users, who are learning how to ukmterpret the different visualizations
to reconstruct the evolution of a system.

Copyright(©) 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingsmrauth.cls

10 M. D’AMBROS AND M. LANZA

(1) =lolx]
Cors Lot
FE P QEQTIET BOEI -8 MNFEF o |

ot/mazilla/dom/src/html — 4
ot et |

~=lol x|
detion TansformallonCokrsLayou
Sert rcsstor P D& BcETE ¢ QEQ TLET BOKRI~Bd%r MNP o

Selct Neghoor Fres tom Information

PP 1.2 - July 15, 1998 23:45:22.000 - vidur@netscape.com
) Xpos. ‘4 ‘vm -0

Dispey Al Fotenti Ecges
»

Displo Eles.

Disrete Trne Bug Product
151 Nodes, 184 Edges -0 3eocter Dicret Time Prodict

S Diserte Tine Comba Frocet

Prodt Frctal Rectangle Checkerboard

133 Nocks, 0 Ecges -0 selected Noces

Figure 8. BugCrawler in action: The window on the top lefth®wing aDirectory Treevisualization and from a
selected directory Rile size-effort-bugiew is spawned, visualizing all the files contained in threcliory.

Tool Implementation. Our environment for visual software evolution reconstiarctis composed
of the importers, the Release History Database (RHDB) andCBawler. Both the importers
and BugCrawler are written in Smalltalk. The importersies® the data from CVS/SubVersion
repositories and Bugzilla/Issuezilla bug tracking systeparse and process &..,link CVS artifacts
with Bugzilla problem reports) and store it on the RHDB. Theporters are accessible from a web
interface, part of the Churrasco framework [7], where a#l fhieces of information needed to run
the importers are the url of the repository and/or bug daab@nce a repository is imported, it is
automatically and periodically updated. The time requiceidnport and process a CVS repository or a
Bugzilla database mostly depends on the time needed to cheitle repository or download the bug
reports. Checking out the entire Mozilla CVS repositorykt@about 2 hours, while downloading more
that 160’000 Mozilla bug reports took more than 40 hourssidgrand processing the data (CVS log
files and bug reports) took less than 1 hour.

Figure 8 shows BugCrawler “in action”: Each window rendergsaialization: The one on the top
left is aDirectory treg the second one isKile size-effort-buda visualization of all the files contained
in a directory selected in the first view). Navigating betwsews is possible through context menus:
The menu items depend on the entity represented by the eglfigtires. For example the menu of a
directory allows the rendering of views for the files it canga

BugCrawler provides flexibility to the user, by allowing Hmer to customize the views parameters
(e.g.,figures, layouts, metrics mapping) and to design new vigatdins on-the-fly. However, for non
expert users, an extensive set of predefined visualizai®oasgailable, and these can be applied by
just selecting a menu item. Scalability is provided by usirsgalizations in the large to see the entire
system, and then by focusing on the interesting parts wétvyin the small. The visualizations in the

Copyright(©) 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingsmrauth.cls

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 11

tool are interactive: It is possible to inspect any entityhia visualization and to reach its original data
source (source file, problem report) using context menus.

Related Work

Visualization has long been used in software evolutionaedeto break down the data quantity and
complexity [2,17,19, 24, 26, 28]. Many approaches congiliféerent releases of a software system
(snapshots) and visualize their history and their diffeemn Jazayerét al. in [19] used a three-
dimensional visual representation for analyzing a softwsystem’s release history. In [18] Jazayeri
proposed a retrospective analysis technique to evaluetéectural stability, based on the use of colors
to depict changes in different releases. In [27], Tu and @ydfroposed an approach which integrates
the use of metrics, software visualization and origin asialjor studying software evolution. Girba
et al. used the notion of history to analyze how changes appeareirsdftware systems [15] and
succeeded in visualizing the histories of evolving clagsdrichies [17]. The main difference between
these approaches and ours is that we consider the fine-dtaistery of a software systerne.,all the
versions of all the software artifacts, while the listedhteiques consider snapshots of the system.

Another approach to software evolution visualization ¢gt3sn retrieving the history of a software
system from versioning system log files. Ball and Eick [1]used on the visualization of different
source code evolution statistics such as code versionrpistidference between releases, static
properties of code, code profiling and execution hot spais program slices. Taylor and Munro [26]
used visualization together with animation to study thduwian of a CVS repository. The technique,
called revision towers, allows the user to find out where tttes@ areas of the project are and how
work is shared out across the project. Rysselberghe and yer{28] used a simple visualization
of CVS data to recognize relevant changes in the softwartersysuch as: (1) unstable components,
(2) coherent entities, (3) design and architectural ei@mhyiand (4) fluctuations in team productivity.
In [32] Wu et al. used the spectograph metaphor to visualize how changes iocsnftware systems.
Girbaet al.[16] analyze how developers drive software evolution byaleing code ownership based
on information extracted from CVS log files.

A number of approaches use information from both differeitases of a software system and
versioning system log files. The EvoGraph visualizatior] fdmbines release history data and source
code changes to assess structural stability and recurrodifications. Pinzgeet al. [24] proposed
a visualization technique based on Kiviat diagrams whiabvisles integrated views on source code
metrics in different releases together with coupling infation computed from CVS log files. Collberg
et al. proposed a graph drawing technique for visualization afdagraphs with temporal component,
with the aim of understanding the evolution of legacy sofen@]. The main difference between the
mentioned approaches and ours is that these visualizadimm®t provide bug related information,
while our visualizations integrate CVS log file and bug replata. Voinea and Telea [30] proposed the
CVSgrab tool which supports querying, analysis and vigatithn of CVS based software repositories,
integrating also Bugzilla information. Their tool allowlset user to produce views, to interact with
them, to do querying and filtering and to customize the viensuhyh a rich set of metrics computed
from the CVS data. They applied CVSgrab to assess changagatipn of buggy files [29]. The
same authors in [31] proposed several visualization teghas (and the corresponding tools), with the
aim of supporting software engineers manage the evolufitarge and complex software systems. A

Copyright(©) 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingsmrauth.cls

12 M. D’AMBROS AND M. LANZA

point in favour of their toolset, with respect to ours, isttitacovers a wide granularity spectrum,
from the evolution of the entire system / subsystem levelyrddo the evolution of single lines

of code, while our finest granularity is at the level of files.diference to BugCrawler is that it

supports different evolutionary perspectives using diffé figures €.g.,Fractal Figures for the author

perspective) and layouts, while in Voinea and Telea todlsistis supported by changing the color
scheme, superimposing another visualization layer amdjudustering.

Ducasseet al. proposed a general visualization technique, called Distion map [9], to analyze
how properties are distributed in a software system. A benéfhis technique over BugCrawler is
its generality, since it is applicable to any property. I®][Ducasseet al. introduced the Package
surface blueprint, a visualization approach to study thatiomships among the packages of a system.
The main difference with our approach is that they addressifipally the problem of understanding
package relationships, rendering packages and classésywelstudy various perspectives of software
evolution, visualizing modules, directories, files and ug

Conclusion

We have presented a visual approach for reconstructingviblet®n of a software system which
relies on information residing in versioning systems and tvacking systems. We discussed several
visualizations aimed at understanding the various aspétk® evolution of a system. The technique
supports the analysis of a system’s history “in the larged &n the small”. Our approach features
many additional visualizations that we did not list becaafsspace reasons, which can be found in [3].
The main contribution of this paper, in particular with respto previously published work
presenting some of the visualization techniques used Her@],[is that it addresses the problem
of understanding software evolution “in the largég., starting from just a CVS (or SubVersion)
repository and a Bugzilla (or Issuezilla) database, carsig various aspects of the system'’s evolution,
and going down to the single file history. In this paper we plsposed a methodology which provides
a systematical way to address the problem of understandftwgage evolution. It allows the software
archeologist to get a complete picture of the evolution obfivsare system, by combining several

aspects of the evolution of its components.
Acknowledgments.We gratefully acknowledge the financial support of the Siatonal Science Foundation (SNF Project
No. 118063, ‘DiCoSA - Distributed Collaborative Softwaraaysis”).

REFERENCES
1. T. Ball and S. Eick. Software visualization in the lardEEE Computer29(4):33—43, 1996.
2. C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampblesystem for graph-based visualization of the evolutibn o

software. InProceedings of the 2003 ACM Symposium on Software Vistiatizpages 77-86. ACM Press, 2003.

3. M. D'Ambros. Software archaeology - reconstructing thelgtion of software systems. Master thesis, Politecnico d
Milano, Apr. 2005.

4. M. D’Ambros and M. Lanza. Reverse engineering with log@@upling. InProceedings of WCRE 2006 (13th Working
Conference on Reverse Engineeringpges 189-198. IEEE CS Press, 2006.

5. M. D’Ambros and M. Lanza. Software bugs and evolution: gudl approach to uncover their relationship Phaceedings
of CSMR 2006 (10th IEEE European Conference on Softwaretbtance and Reengineeringages 227-236. IEEE CS
Press, 2006.

6. M. D'’Ambros and M. Lanza. Bugcrawler: Visualizing evaigi software systems. IRroceedings of CSMR 2007 (11th
IEEE European Conference on Software Maintenance and Resmgng) pages 333-334. IEEE CS Press, 2007.

Copyright(©) 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingsmrauth.cls

VISUAL SOFTWARE EVOLUTION RECONSTRUCTION 13

7.

[ee]

11.

12.

13.
14.

15.

16.
17.
18.
19.
20.
21.

22.
. T. Mens and S. Demeyer. Future trends in software ewolutietrics. InProceedings IWPSE2001 (4th International

24.
25.
26.
27.

28.

29.
30.
31

32.

M. D’Ambros and M. Lanza. A flexible framework to supportlaborative software evolution analysis. Proceedings of
CSMR 2008 (12th IEEE European Conference on Software M&nt® and Reengineering)ages 3-12. IEEE CS Press,
2008.

. M. D’Ambros, M. Lanza, and H. Gall. Fractal figures: Vidaalg development effort for cvs entities. Rroceedings of

Vissoft 2005 (3th IEEE International Workshop on VisualigSoftware for Understandingpages 46-51. IEEE CS Press,
2005.

. S. Ducasse, T. Girba, and A. Kuhn. Distribution mapPioceedings International Conference on Software Mairgace

(ICSM 2006) 2006.

. S. Ducasse, D. Pollet, M. Suen, H. Abdeen, and I. Allouiackage surface blueprints: Visually supporting the

understanding of package relationships.Plceedings IEEE International Conference on Softwarentéaénance (ICSM
2007) pages 94-103, Los Alamitos CA, Oct. 2007. IEEE CS Press.

M. Fischer and H. C. Gall. Evograph: A lightweight apmiodo evolutionary and structural analysis of large sofevar
systems. IrProceedings of the 13th Working Conference on Reverse &smgig (WCRE)pages 179-188, Benevento,
Italy, October 2006. IEEE Computer Society.

M. Fischer, M. Pinzger, and H. Gall. Populating a reldds®ry database from version control and bug trackingesyst
In Proceedings International Conference on Software Mammee (ICSM 2003)pages 23-32, Los Alamitos CA, Sept.
2003. IEEE Computer Society Press.

H. Gall, K. Hajek, and M. Jazayeri. Detection of logicalupling based on product release history. Poceedings
International Conference on Software Maintenance (ICS8),’Bages 190-198, Los Alamitos CA, 1998. IEEE CS Press.
H. Gall, M. Jazayeri, R. Kldsch, and G. Trausmuth. Safenevolution observations based on product release yistor
Proceedings International Conference on Software Maimter (ICSM'97)pages 160-166. IEEE CS Press, 1997.

T. Girba, S. Ducasse, and M. Lanza. Yesterday’'s WeaBwdding early reverse engineering efforts by summariziveg
evolution of changes. IRroceedings 20th IEEE International Conference on SofvMaintenance (ICSM 2004pages
40-49, Los Alamitos CA, Sept. 2004. IEEE Computer Sociegs®r

T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. Howlae®es drive software evolution. IRroceedings of
International Workshop on Principles of Software Evolaot{WPSE 2005)pages 113-122. IEEE CS Press, 2005.

T. Girba, M. Lanza, and S. Ducasse. Characterizing vbkiteon of class hierarchies. IRroceedings IEEE European
Conference on Software Maintenance and Reengineering FCEM5) pages 2-11. IEEE CS Press, 2005.

M. Jazayeri. On architectural stability and evolutidn.Reliable Software Technologies-Ada-Europe 2Q@jes 13-23,
Berlin, 2002. Springer Verlag.

M. Jazayeri, H. Gall, and C. Riva. Visualizing Softwareldase Histories: The Use of Color and Third Dimension. In
Proceedings of ICSM '99 (International Conference on SafWMaintenance)pages 99-108. IEEE CS Press, 1999.

M. Lanza. Codecrawler — lessons learned in building twswé visualization tool. IfProceedings of CSMR 2008ages
409-418. IEEE Press, 2003.

M. Lanza and S. Ducasse. Polymetric views—a lightweiggual approach to reverse engineeringEE Transactions
on Software Engineerin@9(9):782—795, Sept. 2003.

M. Lehman and L. BeladyProgram Evolution: Processes of Software Changendon Academic Press, London, 1985.

Workshop on Principles of Software Evolutippages 83—86, 2001.

M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visual@imultiple evolution metrics. IfProceedings of SoftVis 2005
(2nd ACM Symposium on Software Visualizatigrgges 67—75, St. Louis, Missouri, USA, May 2005.

B. Shneiderman. Tree visualization with tree-maps: B 8pace-filling approach.ACM Transactions on Graphics
11(1):92-99, 1992.

C. Taylor and M. Munro. Revision towers. Rroceedings 1st International Workshop on Visualizingtv&ae for
Understanding and Analysipages 43-50, Los Alamitos CA, 2002. IEEE Computer Society.

Q. Tu and M. W. Godfrey. An integrated approach for stngyarchitectural evolution. [40th International Workshop
on Program Comprehension (IWPC'Q3)ages 127-136. IEEE Computer Society Press, June 2002.

F. Van Rysselberghe and S. Demeyer. Studying softwarkeiten information by visualizing the change history. In
Proceedings 20th IEEE International Conference on Sofwdaintenance (ICSM '04)pages 328-337, Los Alamitos
CA, Sept. 2004. IEEE Computer Society Press.

L. Voinea and A. Telea. How do changes in buggy mozills filopagate? 18oftVis '06: Proceedings of the 2006 ACM
symposium on Software visualizatigrages 147-148, New York, NY, USA, 2006. ACM.

L. Voinea and A. Telea. An open framework for cvs repagitquerying, analysis and visualization. MSR '06:
Proceedings of the 2006 international workshop on Mininfjveare repositoriespages 33—-39. ACM, 2006.

L. Voinea and A. Telea. Visual data mining and analysisoffware repositoriesComputers & Graphics31(3):410-428,
2007.

J. Wu, R. Holt, and A. Hassan. Exploring software evolutiising spectrographs. Rroceedings of 11th Working
Conference on Reverse Engineering (WCRE 20f#ges 80—89, Los Alamitos CA, Nov. 2004. IEEE CS Press.

Copyright(©) 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pra@007;0:0-0
Prepared usingsmrauth.cls

