Supporting Software Evolution Analysis with Historical Dependencies and
Defect Information

Marco D’ Ambros

REVEAL @ Faculty of Informatics
University of Lugano, Switzerland

Abstract

More than 90% of the cost of software is due to mainte-
nance and evolution. Understanding the evolution of large
software systems is a complex problem, which requires the
use of various techniques and the support of tools. Several
software evolution approaches put the emphasis on struc-
tural entities such as packages, classes and structural rela-
tionships. However, software evolution is not only about the
history of software artifacts, but it also includes other types
of data such as problem reports, mailing list archives etc.

We propose an approach which focuses on historical de-
pendencies and defects. We claim that they play an important
role in software evolution and they are complementary to
techniques based on structural information. We use histor-
ical dependencies and defect information to learn about a
software system and detect potential problems in the source
code. Moreover, based on design flaws detected in the source
code, we predict the location of future bugs to focus main-
tenance activities on the buggy parts of the system. We
validated our defect prediction by comparing it with the
actual defects reported in the bug tracking system.

1 Introduction

The analysis of the evolution of software [16] has two
main goals, namely to infer causes of its current problems,
and to predict its future development. Many approaches
based on evolutionary information demonstrated that not
only can such information be used to predict the future evo-
lution [18], but it can also point out potential problems in the
system [12]. Understanding the evolution of large software
systems is a complex problem for several reasons: huge
amounts of information have to be considered and historical
data has to be analyzed to understand the phenomena of
evolution and to infer causes of problems. The evolution of a
software system is not only the collection of all the versions
of its components: developing software is a human activity,
and the evolution of a software system also includes the ac-

tivities performed by developers, testers, users, efc. during
the entire history of the system. This additional information
comes from various sources such as comments committed by
developers during the implementation, problem reports deliv-
ered by users and stored in bug tracking systems, mailing list
archives, efc. Several software evolution analysis techniques
have been proposed which either focus on the source code
and its evolution, without exploiting other data sources such
as problem reports, or they use additional information (e.g.,
e-mail archives), without a direct link to the source code.
We propose an approach to support software evolution
which focuses on historical dependencies and defects. We
chose these types of information for the following reasons:

e Historical dependencies are visible in the evolution of
a system only, and not in its structure, and are therefore
the most troublesome since they are not visible to the
developers while coding. Violating these dependencies
can lead to maintenance problems and generate bugs.

e Software maintenance aims at keeping the quality of
software at a good level. Software defects are a tangi-
ble effect of bad software quality, and thus they are a
measure of the maintenance cost of a system. Defect
information is helpful to detect the problematic parts of
a software system.

e Several sources of information can be used to study
the evolution of a software. However, the final goal of
using them is to ease software maintenance activities,
by detecting problems in the source code. The benefits
of historical dependencies and defects, over other data
sources such as mailing list archives, is that they can be
directly linked to the source code. Historical dependen-
cies are between software artifacts and defects affect
certain parts of the source code.

2 Approach and Validation

Figure 1 shows the overall schema of our approach, di-
vided in: (1) Software system, (2) Model and (3) Analysis.

Software System Model

L] : LS.
d Bug Watches
Source code FAMIX model) Bug history
(- Meta |o
S e -’
cvs / svn History model L\ Bug prediction

) J S

Bug model TR
Nhae volution Radar
{with history) Change Coupling

Analysis

Bugzilla / Issuezilla

Figure 1. The general schema of our approach
to software evolution analysis.

Software System. To do software evolution analysis we
consider the following data sources about a software project:
the source code (written in various languages such as
Java, C++, etc.), the versioning system log files (CVS
or SubVersion) and the problem report data (Bugzilla or
Issuzilla repository).

Model. We have defined an evolutionary meta-model of
software systems. It describes (1) the source code by means
of the FAMIX language independent meta-model [7], (2)
the history of software artifacts [4] and (3) the problem
reports together with their histories [6]. The model is
populated in batch mode, by just providing the url of
the SubVersion (or CVS) and Bugzilla (or Issuezilla)
repositories from a web interface. In [4] we describe
the details of the meta-model and the web interface. We
also discuss how we provide flexibility to the meta-model
through an engine, called meta-base, able to automati-
cally generate object persistency descriptors based on the
EMOF (Essential Meta Object Facilities?) meta-meta-model.

Analysis. Our software evolution analysis approach has two
main goals: first we want to use evolutionary information
about dependencies and defects to detect potential problems
in the system. Second, we want to detect particular design
flaws in the source code and use them to predict locations of
future bugs. Both these activities lead us to identify on which
parts of the system the maintenance effort should be spent.
To achieve these goals, we have introduced three approaches,
presented in the remainder of this section: (1) visualizations
(Bug Watches) to understand the history of bugs, (2) design
flaws detection for defect prediction and (3) visualizations
to perform change coupling analysis.

I'See www.bugzilla.org/ and www.netbeans.org/kb/articles/issuezilla.html
Zhttp://www.omg.org/docs/html/06-01-01/Output/06-01-01.htm

In our approaches we make use of various visualizations.
We decided to use visualization because it provides effective
ways to break down the complexity of information, and
because it has proven to be a successful means to study the
evolution of software systems [13, 14, 20].

2.1 Bug History Analysis

Bug tracking systems are used by developers, quality as-
surance people, testers, and end users to provide feedback on
software systems. They are also used in software evolution
research to perform retrospective system analysis [3,8]. In
this context bugs are linked to software artifacts (e.g., files,
classes) using different heuristics, with the aim of detecting
the most problematic parts of the system, i.e., the ones af-
fected by many bugs. Some approaches model bugs as mere
numbers (e.g., file x is affected by n bugs, file y by m), while
others also model bug properties such as the description, the
severity, the person assigned to fix it, etc. However, bugs are
often considered as an unwanted “side dish” of the evolu-
tion phenomenon, and they are modeled as “static” entities
affecting the source code.

We have proposed an approach in which we consider
bugs as first-level entities which can change and evolve over
time. In particular we have focused on the bug life cycle, i.e.,
the history of a bug and the various states it traverses. Our
hypothesis is that bug histories represent a valuable source
of information that can lead to interesting insights about a
system, that would be hard or impossible to obtain by mod-
eling the bugs as static entities. Based on the information we
recovered from Bugzilla (or Issuezilla), we have introduced
two visualization techniques aimed at understanding bugs at
two different levels of granularity:

1. System Radiography. This visualization renders bug
information at the system level and provides indications
about which parts of the system are affected by what
kind of bugs at which point in time. It is a high-level
indicator of the system health and serves as a basis for
reverse engineering activities.

2. Bug Watch. This visualization provides information
about a specific bug and is helpful to understand the
various phases that it traversed. The view supports the
characterization of bugs and the identification of the
most critical ones, based on their histories.

The proposed approach provided two main contributions:
(1) introducing the concept of a bug’s life, i.e., bugs are con-
sidered as evolving entities which change over time. Study-
ing the history of bugs permits an accurate characterization
of them. (2) Introducing a new criterion for bug criticality:
besides the severity and priority we have also considered the
life cycle. The underlying assumption is that bugs reopened
several times are more critical.

We have applied the technique on the Mozilla software
project, finding interesting insights into the system, and de-
tecting the most critical components. However, we still need
to do a more complete validation of the approach, in particu-
lar by giving feedback to the developers and evaluating the
usefulness of our findings.

2.2 Defect Prediction

Defect prediction deals with guessing where in a system
there will be bugs, thus providing valuable information to
developers and project managers, since this allows them to
focus resources. Previous research has proven that the best
predictor for bugs are the bugs themselves [22], i.e., entities
affected by bugs in the past usually suffer from them in the
future as well, as long as no substantial efforts are spent
on restructuring the ailing parts. This however presumes
the usage of a bug tracking system. How can one predict
bugs in the absence of recorded bugs or in the case of a
freshly developed system? Researchers tried to answer this
question with complexity metrics, where the assumption is
that complex pieces of software generate bugs [19].

We have proposed an approach (under submission) to
predict defects based on the presence of so-called “design
disharmonies” [15], which can be discovered through a tech-
nique based on detection strategies [17]. Detection strategies
are metrics-based composed logical conditions, by which
design fragments with specific properties are detected in
the source code. Design disharmonies are similar to code
smells [9], where the difference is that by translating a set
of design guidelines or heuristics the former can be automat-
ically uncovered with detection strategies. Our underlying
assumption is that pieces of software which exhibit design
problems are also prone to generate bugs.

To validate our technique, we applied it on version n — 1
of a system, obtaining a list of classes with the numbers
of predicted bugs. We then compared this with the actual
bugs reported in version n of the system, and computed the
prediction performance. We experimented the approach on
several versions of 3 software systems (Eclipse JDT Core, Ar-
goUML, Aspect]), and were able to prove that design dishar-
monies represent a good means to predict defects, obtaining
an increase in prediction power over other approaches.

2.3 Change Coupling Analysis

Change coupling is the implicit dependency between two
or more software artifacts that have been observed to fre-
quently change together during the evolution of a system.
This dependency provides additional types of information
that are not visible when only one version of a system is con-
sidered. Previous research has dealt with low-level couplings
between files [21,23], leading to an explosion of data to be

analyzed, or has abstracted the change couplings to module
level [10,11,20], leading to a loss of detailed information.

We proposed an approach which integrates change cou-
pling information at different levels of abstraction, to detect
areas in the system which may lead to maintenance prob-
lems. Our technique uses an interactive visualization called
the Evolution Radar [2,5], which can effectively break down
the amount and complexity of the change coupling data.

XY

[\
ModelFacade java []

()

4
®
eqeratorJava java
[]

'CodeGenerator
¢

ModulelLoader
Notation

Internationalization
Explorer

Application

Figure 2. The Evolution Radar visualization.

Figure 2 shows an example of the Evolution Radar, ap-
plied to the Diagram module of ArgoUML. The visualization
shows the dependencies between a module, represented as a
circle and placed in the center of a pie chart, and all the other
modules in the system represented as sectors of the pie chart.
In each sector, all the files belonging to the corresponding
module are represented as colored circles and positioned
according to the change coupling they have with the module
in the center (the higher the coupling the closer to the center).
The Evolution Radar allows us to understand the dependen-
cies between modules and to detect the main responsible
for such dependencies in terms of files, represented by the
circles closest to the center.

We have validated our approach on three large open
source software systems: Mozilla [5], PostgreSQL [1] and
ArgoUML [2]. We have applied the Evolution Radar to
understand module dependencies and to detect candidates
for reverse engineering. We have found design issues and
dependencies between modules not mentioned in the doc-
umentation. We have also reduced these dependencies to
coupling between small sets of files, which should be reengi-
neered in order to decrease the coupling at the module level.

3 Conclusion

To support software evolution analysis we have proposed
a technique based on historical dependencies and defect
information. We chose these two kinds of data about a soft-
ware system because they are complementary to structural
information and, differently from other data sources (e.g.,
mail archives), they can be directly linked to the source code.
The main contributions of our work so far are:

o A meta-model for defects, which takes time into ac-
count. It considers bugs as evolving entities, while in
previous research they were considered static entities.

e Two visualizations (System Radiography and Bug
Watch) which, exploiting the defect meta-model, sup-
ports the understanding of bugs evolution and the detec-
tion of critical bugs. The riskiness of a bug is defined
according to its history, and in particular to its life cycle,
whereas in previous approaches only static attributes
(such as severity and priority) were considered.

e A defect prediction technique based on particular de-
sign flaws called design disharmonies. The approach
represents an improvement over the state of the art in
metrics-based defect prediction.

e The Evolution Radar visualization, which shows change
coupling information at different levels of abstraction,
supporting the understanding of both module depen-
dencies and the causes of the dependencies. Previous
techniques focused on either coarse-grained coupling,
i.e., at the module level, or fine-grained coupling, i.e.,
at the file (or finer) level.

We plan to continue our work in two directions: first we
want to investigate other types of historical dependencies,
for example the one based on bug sharing. The assumption
is that two entities sharing a bug, over the system’s history,
have an implicit dependency. The greater the number of bugs
they share, and the longer the time during which they share
bugs, the stronger the dependency is. In the second research
direction we plan to use historical dependency information
to predict bugs. This would integrate our approaches for

historical dependency analysis and bug prediction.
Acknowledgments. We gratefully acknowledge the financial support

of the Swiss National Science foundation for the project “DiCoSA - Dis-

tributed Collaborative Software Analysis” (SNF Project No. 118063).

References

[1] M. D’Ambros and M. Lanza. Applying the evolution radar to

postgresql. In Proceedings of MSR 2006, pages 177-178.
[2] M. D’Ambros and M. Lanza. Reverse engineering with logical

coupling. In Proceedings of WCRE 2006, pages 189-198.
IEEE CS Press, 2006.

[3] M. D’Ambros and M. Lanza. Software bugs and evolution: A
visual approach to uncover their relationship. In Proceedings

of CSMR 2006, pages 227-236. IEEE CS Press, 2006.
[4] M. D’Ambros and M. Lanza. A flexible framework to support

collaborative software evolution analysis. In Proceedings of

CSMR 2008, pages 3—12. IEEE Computer Society, 2008.
[S] M. D’Ambros, M. Lanza, and M. Lungu. The evolution

radar: Visualizing integrated logical coupling information. In

Proceedings of MSR 2006, pages 26-32, 2006.
[6] M. D’Ambros, M. Lanza, and M. Pinzger. “a bug’s life” -

visualizing a bug database. In Proceedings of VISSOFT 2007,

pages 113-120. IEEE CS Press, 2007.
[71 S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 — The

FAMOOS Information Exchange Model. Technical report,

University of Bern, 2001.
[8] M. Fischer and H. Gall. Visualizing feature evolution of large-

scale software based on problem and modification report data.
Journal of Software Maintenance and Evolution: Research

and Practice, 16(6):385-403, 2004.
[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.

Refactoring: Improving the Design of Existing Code. Addison
Wesley, 1999.

[10] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. In Proceedings of

ICSM 1998), pages 190-198. IEEE CS Press, 1998.
[11] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history

data for detecting logical couplings. In Proceedings of IWPSE

2003, pages 13-23. IEEE Computer Society Press, 2003.
[12] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s Weather:

Guiding early reverse engineering efforts by summarizing the
evolution of changes. In Proceedings of ICSM 2004, pages

40-49. IEEE CS Press, 2004.
[13] T. Girba, M. Lanza, and S. Ducasse. Characterizing the

evolution of class hierarchies. In Proceedings of CSMR 2005,
pages 2—-11. IEEE CS Press, 2005.

[14] M. Jazayeri, H. Gall, and C. Riva. Visualizing Software
Release Histories: The Use of Color and Third Dimension. In

Proceedings of ICSM 1999, pages 99-108. IEEE Press, 1999.
[15] M. Lanza and R. Marinescu. Object-Oriented Metrics in

Practice. Springer-Verlag, 2006.
[16] M. Lehman and L. Belady. Program Evolution: Processes of

Software Change. London Academic Press, London, 1985.
[17] R. Marinescu. Detection strategies: Metrics-based rules for

detecting design flaws. In Proceedings of ICSM 2004, pages

350-359. IEEE CS Press, 2004.
[18] T. Mens and S. Demeyer. Future trends in software evolution

metrics. In Proceedings of IWPSE 2001, pages 83-86, 2001.
[19] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict

component failures. In Proceedings of ICSE 2006, pages 452—

461. ACM, 2006.
[20] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing

multiple evolution metrics. In Proceedings of SoftVis 2005,

pages 67-75, 2005.
[21] J. Ratzinger, M. Fischer, and H. Gall. Improving evolvability

through refactoring. In Proceedings of MSR 2005, pages 1-5.

ACM Press, 2005.
[22] T.Zimmermann, R. Premraj, and A. Zeller. Predicting defects

for eclipse. In Proceedings of ICSEW 2007, page 76. IEEE

CS Press, 2007.
[23] T. Zimmermann, P. Weiligerber, S. Diehl, and A. Zeller. Min-

ing version histories to guide software changes. In Proceed-
ings of ICSE 2004, pages 563-572. IEEE CS Press, 2004.

