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Abstract. Traces of the evolution of software systems are left in a number of
different repositories: such as configuration management systems, bug tracking
systems, mailing lists. Developers use e-mails to discuss issues ranging from low-
level concerns (bug fixes, refactorings) to high-level resolutions (future planning,
design decisions). Thus, e-mail archives constitute a valuable asset for under-
standing the evolutionary dynamics of a system.
We introduce metrics that measure the “popularity” of source code artifacts, i.e.,
the amount of discussion they generate in e-mail archives, and investigate whether
the information contained in e-mail archives is correlated to the defects found in
the system. Our hypothesis is that developers discuss problematic entities more
than unproblematic ones. We also study whether the precision of existing tech-
niques for defect prediction can be improved using our popularity metrics.

1 Introduction

Knowing the locations of future software defects allows project managers to optimize
the resources available for the maintenance of a software project by focusing on the
most problematic components. However, performing defect prediction with enough pre-
cision to produce useful results is a challenging problem. Researchers have proposed
a number of approaches to predict software defects, exploiting a variety of sources of
information, such as source code metrics [?,?,?,?,?], code churn [?], process metrics ex-
tracted from versioning system repositories [?,?], past defects [?,?]. A possible source
of information for defect prediction that was not exploited so far is development mailing
lists.

Due to the increasing extent and complexity of software systems, it is common to
see large teams, or even communities, of developers working on the same project in a
collaborative fashion. In such cases e-mails are the favorite media for the coordination
between all the participants. Mailing lists, which are preferred over person-to-person
e-mails, store the history of inter-developers, inter-users, and developers-to-users dis-
cussions: Issues range from low-level decisions (e.g., bug fixing, implementation issues)
up to high-level considerations (e.g., design rationales, future planning).

Development mailing lists of open source projects are easily accessible and they
contain information that can be exploited to support a number of activities. For exam-
ple, the understanding of software systems can be improved by adding sparse explana-
tions enclosed in e-mails [?]; the rationale behind the system design can be extracted
from the discussions that took place before the actual implementation [?]; the impact of
changes done on the source code can be assessed by analyzing the effect on the mailing



list [?]; the behavior of developers can be analyzed to verify if changes follow discus-
sion, or vice-versa; hidden coupling of entities that are not related at code level can be
discovered if often mentioned together in discussions.

One of the biggest challenges when dealing with mailing lists as a source of infor-
mation is correctly linking each e-mail to any source code entity it discusses. In previous
work we specifically tackled this issue [?]. Using a benchmark of a statistically signif-
icant size, we showed that lightweight grep-based techniques reach an acceptable level
of precision in the linking task. Such techniques allow us to use mailing lists as a source
of information about the source code.

Why would one want to use e-mails for defect prediction? The source code of soft-
ware systems is only written by developers, who must follow a rigid and terse syntax
to define abstractions they want to include. On the other hand of the spectrum, mailing
lists, even those specifically devoted to development, archive e-mails written by both
programmers and users. Thus, the entities discussed are not only the most relevant from
a development point of view, but also the most exploited during the use of a software
system. In addition, the content of e-mail is expressed using natural language, which
does not require the writer to carefully explain all the abstractions using the same level
of importance, but easily permits to generalize some concepts and focus on others. For
this reason, we expect information we extract from mailing lists to be independent from
those provided by the source code analysis. Thus, they can add valuable information to
software analysis.

We present different “popularity” metrics that express the importance of each source
code entity in discussions taking place in development mailing lists. Our hypothesis is
that such metrics are an indicator of possible flaws in software components, thus being
correlated with the number of defects. We aim at answering the following research
questions:

– Q1: Does the popularity of software components in discussions correlate with soft-
ware defects?

– Q2: Is a regression model based on the popularity metrics a good predictor for
software defects?

– Q3: Does the addition of popularity metrics improve the prediction performance of
existing defect prediction techniques?

We provide the answers to these questions by validating our approach on four dif-
ferent open source software systems.

2 Methodology

Our goal is first to inspect whether popularity metrics correlate with software defects,
and to study whther existing bug prediction approaches can be improved using such
metrics. To do so, we follow the methodology depicted in Figure ??:

– We extract e-mail data, link it with source code entities and compute popularity
metrics. We extract and evaluate source code and change metrics.
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Fig. 1. Overall schema of our approach.

– We extract defect data from issue repositories and we quantify the correlation of
popularity metrics with software defects, using as baseline the correlation between
source code metrics and software defects.

– We build regression models with popularity metrics as independent variables and
the number of post-release defects as the dependent variable. We evaluate the per-
formance of the models using the Spearman’s correlation between the predicted
and the reported bugs. We create regression models based on source code metrics
[?,?,?,?] and change metrics [?,?] alone, and later enrich these sets of metrics with
popularity metrics, to measure the improvement given by the popularity metrics.

In the experiments, we focus on object-oriented Java software systems using classes
as target entities.

Modeling. The first step is to model the source code of the software systems we ana-
lyze. Using the tool inFusion1, we extract the object-oriented model of the source code
according to FAMIX, a language independent meta-model of object oriented code [?].

Computing Source Code Metrics. Once we obtain the FAMIX model of a software
system, we compute a catalog of object oriented metrics, listed in Table ??. The catalog
includes the Chidamber and Kemerer (CK) metrics suite [?], which was already used
for bug prediction [?,?,?,?], and additional object oriented metrics.

Computing Change Metrics. Change metrics are “process metrics” extracted from ver-
sioning system log files (CVS and SVN in our experiments). Differently from source

1 http://www.intooitus.com/inFusion.html

http://www.intooitus.com/inFusion.html


CK metrics Other OO Metrics
WMC Weighted Method Count FanIn Number of other classes that reference the class
DIT Depth of Inheritance Tree FanOut Number of other classes referenced by the class
RFC Response For Class NOA Number of attributes
NOC Number Of Children NOPA Number of public attributes
CBO Coupling Between Objects NOPRA Number of private attributes
LCOM Lack of Cohesion in Methods NOAI Number of attributes inherited

LOC Number of lines of code
NOM Number of methods
NOPM Number of public methods
NOPRM Number of private methods
NOMI Number of methods inherited

Table 1. Class level source code metrics.

code metrics which measure several aspects of the source code, change metrics are mea-
sures of how the code was developed over time. We use the set of change metrics listed
in Table ??, which is a subset of the ones used in [?].

Change Metrics
NR Number of revisions NREF Number of times file has been refactored
NFIX Number of times file was involved in bug-fixing NAUTH Number of authors who committed the file
CHGSET Change set size (maximum and average) AGE Age of a file

Table 2. Class level change metrics.

To use change metrics in our experiments, we need to link them with source code
entities, i.e., classes. We do that by comparing the versioning system filename, including
the directory path, with the full class name, including the class path. Due to the file-
based nature of SVN and CVS and to the fact that Java inner classes are defined in the
same file as their containing class, several classes might point to the same CVS/SVN
file. For this reason, we do not consider inner Java classes.

Computing Popularity Metrics. The extraction of popularity metrics, given a software
system and its mailing lists, is done in two steps: First it is necessary to link each class
with all the e-mails discussing it, then the metrics must be computed using the links
obtained. In the following, we briefly present the technique to link e-mails to classes,
then we discuss the popularity metrics we propose to answer our research questions.
Figure ?? shows the process used to prepare the data for evaluating the popularity met-
rics.

First, we parse the target e-mail archive to build a model according to an e-mail
meta-model we previously defined [?]. We model body and headers, plus additional data
about the inter messages relationships, i.e., thread details. Then, we analyze the FAMIX
object-oriented model of the target source code release to obtain the representation of
all the classes. Subsequently, we link each class with any e-mail referring it, using
lightweight linking techniques based on regular expressions, whose effectiveness was
validated in a previous work [?]. We obtain an object-oriented FAMIX model enriched
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Fig. 2. Linking mails and classes.

with all the connections and information about classes stored in the e-mail archive.
Through this model we can extract the popularity metrics listed in Table ??.

Popularity Metrics
POP-NOM Number of Mails POP-NOCM Number of Characters in Mails
POP-NOT Number of Threads POP-NOMT Number of Mails in Threads
POP-NOA Number of Authors

Table 3. Class-level popularity metrics.

For each popularity metrics that we propose, we also provide the rationale behind
their creation and a high-level description of their implementation, using our enriched
object-oriented model.

POP-NOM: To associate the popularity of a class with discussions in mailing lists,
we count the number of mails that are mentioning it. Since we are considering develop-
ment mailing lists, we presume that classes are mainly mentioned in discussions about
failure reporting, bug fixing and feature enhancements, thus they can be related to de-
fects. Thanks to the enriched FAMIX model we generate, it is simple to compute this
metric. Once the mapping from classes to e-mails is completed, and the model contains
the links, we count the number of links of each class.

POP-NOCM: Development mailing lists can also contain other topics than techni-
cal discussions. For example, while manually inspecting part of our dataset, we noticed
that voting about whether and when to release a new version occurs quite frequently in
Lucene, Maven and Jackrabbit mailing lists. Equally, announcements take place with
a certain frequency. Usually this kind of messages are characterized by a short content
(e.g., “yes” or “no” for voting, “congratulations” for announcements). The intuition is
that e-mails discussing flaws in the source code could present a longer amount of text
than mails about other topics. We consider the length of messages taking into account
the number of characters in the text of mails: We evaluate the POP-NOCM metric by
adding the number of characters in all the e-mails related to the chosen class.



POP-NOT: It is a long tradition in mailing lists to divide discussions in threads. Our
hypothesis is that all the messages that form thread discuss the same topic: If an author
wants to start talking about a different subject she can create a new thread. We suppose
that if developers are talking about one defect in a class they will continue talking about
it in the same thread. If they want to discuss about an unrelated or new defect (even in
the same classes) they would open a new thread. The number of threads, then, could be
a popularity metric whose value is related to the number of defects. After extracting e-
mails from mailing lists, our e-mail model also contains the information about threads.
Once the related mails are available in the object-oriented model, we retrieve this thread
information from the messages related to each class and count the number of different
threads. If two, or more, e-mails related to the same class are part of the same thread,
they are counted as one.

POP-NOMT: Inspecting sample e-mails from the mailing lists which form our ex-
periment, we noticed that short threads are often characteristic of “announcements” e-
mails, simple e-mails about technical issues experimented by new users of the systems,
or updates about the status of developers. We hypothesize that longer threads could be
symptom of discussions about questions that raise the interest of the developers, such
as those about defects, bugs or changes in the code. For each class in the source code,
we consider the thread of all the referring mails, and we count the total number of mails
in each thread. If a thread is composed by more than one e-mail, but only one is refer-
ring the class, we still count all the e-mails inside the thread, since it is possible that
following e-mails reference the same class implicitly.

POP-NOA: A high number of authors talking about the same class suggests that it
is subject to broad discussions. For example, a class frequently mentioned by different
users can hide design flaws or stability problems. Also, a class discussed by many de-
velopers might be not well-defined, comprehensible, or correct, thus more defect prone.
For each class, we count the number of authors that wrote in referring mails (i.e., if the
same author wrote two, or more, e-mails, we count only one).

Extracting Bug Information. To measure the correlation of metrics with software de-
fects, and to perform defect prediction, we need defect information and we need to link
it with source code entities, i.e., we need to map each problem report to classes of the
system that it affects. We link FAMIX classes with versioning system files, as we did
to compute change metrics, and the files with bugs retrieved from a Bugzilla2 or a Jira3

repository. Figure ?? shows the bug linking process.
A file version in the versioning system contains a developer comment written at

commit time, which often includes a reference to a problem report (e.g., “fixed bug
123”). Such references allow us to link problem reports with files in the versioning
system, and therefore with source code artifacts, e.g., classes. However, the link between
a CVS/SVN file and a Bugzilla/Jira problem report is not formally defined, and to find a
reference to the problem report id we use pattern matching techniques on the developer
comments, a widely adopted technique [?,?]. Once we have established the link between

2 http://www.bugzilla.org
3 http://www.atlassian.com/software/jira/

http://www.bugzilla.org
http://www.atlassian.com/software/jira/
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Fig. 3. Linking bugs, SCM files and classes.

a problem report and a file version, we verify that the bug has been reported before the
commit time of the file version.

To measure the correlation between metrics and defects we consider all the defects,
while for bug prediction only post-release defects, i.e., the ones reported within a six
months time interval after the considered release of the software system4.

The output of the bug linking process is, for each class of the considered release,
the total number of defects and the number of post-release defects.

3 Experiments

We conducted our experiment on the software systems depicted in Table ??.

System
URL

Description Classes
Mailing listsMailing listsMailing lists Bug Tracking SystemsBug Tracking Systems

System
URL

Description Classes
Creation

E-MailsE-Mails
Creation Defects

System
URL

Description Classes
Creation

Total Linked
Creation Defects

Equinox
eclipse.org/equinox

Plugin system for the Eclipse project 439 Feb 2003 5,575 2,383 Feb 2003 1,487

Jackrabbit
jackrabbit.apache.org

Implementation of the Content Repository 
for Java Technology API (JCR)

1,913 Sep 2004 11,901 3,358 Sep 2004 2,340

Lucene
lucene.apache.org

Text search engine library 1,279 Sep 2001 17,537 8,800 Oct 2001 1,954

Maven
maven.apache.org

Tool for build automation and 
management of Java projects

301 Nov 2002 65,601 4,616 Apr 2004 4,384

Table 4. Dataset

We considered systems that deal with different domains and have distinct charac-
teristics (e.g., popularity, number of classes, e-mails, and defects) to mitigate some of
the threats to external validity. These systems are stable projects, under active develop-
ment, and have a history with several major releases. All are written in Java to ensure
that all the code metrics are defined identically for each system. By using the same

4 Six months for post release defects was also used by Zimmermann et al. [?].



parser, we can avoid issues due to behavior differences in parsing, a known issue for
reverse engineering tools [?].

Public development mailing lists used to discuss technical issues are available for
all the systems, and are separated from lists specifically thought for system user issues.
We consider e-mails starting from the creation of each mailing list until September
2009. Messages automatically generated by bug tracking and revision control systems
are filtered out, and we report the resulting number of e-mails and the number of those
referring to classes according to our linking techniques. All systems have public bug
tracking systems, that were usually created along with the mailing lists.

3.1 Correlations Analysis

To answer the research question Q1 “Does the popularity of software components corre-
late with software defects?”, we compute the correlation between class level popularity
metrics and the number of defects per class. We compute the correlation in terms of
both the Pearson’s and the Spearman’s correlation coefficient (rprs and rspm, respec-
tively). The Spearman’s rank correlation test is a non-parametric test that uses ranks of
sample data consisting of matched pairs. The correlation coefficient varies from 1, i.e.,
ranks are identical, to -1, i.e., ranks are the opposite, where 0 indicates no correlation.
Contrarily to Pearson’s correlation, Spearman’s one is less sensitive to bias due to out-
liers and does not require data to be metrically scaled or of normality assumptions [?].
Including the Pearson’s correlation coefficient augment the understanding about the re-
sults: If rspm is higher than rprs, we might conclude that the variables are consistently
correlated, but not in a linear fashion. If the two coefficients are very similar and dif-
ferent from zero, there is indication of a linear relationship. Finally, if the rprs value is
significantly higher than rspm, we can deduce that there are outliers inside the dataset.
This information first helps us to discover threats to construct validity, then put in ev-
idence single elements that are heavily related. For example, a high rprs can indicate
that, among the classes with the highest number of bugs, we can find also the classes
with the highest number of related e-mails.

We compute the correlation between class level source code metrics and number
of defects per class, in order to compare the correlation to a broadly used baseline.
For lack of space we only show the correlation for the source code metric LOC, as
previous research showed that it is one of the best metrics for defect prediction [?,?,?,?].
Table ?? shows the correlation coefficients between the different popularity metrics and
the number of bugs of each system.

System POP-NOM POP-NOCM POP-NOT POP-NOTM POP-NOA LOC
rspm rprs rspm rprs rspm rprs rspm rprs rspm rprs rspm rprs

Equinox .52 .51 .52 .42 .53 .54 .52 .48 .53 .50 .73 .80
Jackrabbit .23 .35 .22 .36 .24 .36 .23 -.02 .23 .34 .27 .54

Lucene .41 .63 .38 .57 .41 .57 .42 .68 .41 .54 .17 .38
Maven .44 .81 .39 .78 .46 .78 .44 .81 .45 .78 .55 .78

Table 5. Correlation coefficients.



We put in bold the highest values achived for both rspm and rprs, by system. Re-
sults provides evidence that the two metrics are rank correlated, and correlations over
0.4 are considered to be strong in fault prediction studies [?]. The Spearman correlation
coefficients in our study exceed this value for three systems, i.e., Equinox, Lucene, and
Maven. In the case of Jackrabbit, the maximum coefficient is 0.24, which is similar to
value reached using LOC. The best performing popularity metric depends on the soft-
ware system: for example in Lucene, POP-NOTM, which counts the length of threads
containing e-mails about the classes, is the best choice, while POP-NOT, number of
threads containing at least one e-mail about the classes, is the best performing for other
systems.

3.2 Defect Prediction

To answer the research question Q2 “Is a regression model based on the popularity met-
rics a good predictor for software defects?” , we create and evaluate regression models
in which the independent variables are the class level popularity metrics, while the de-
pendent variable is the number of post-release defects per class. We create regression
models based on source code metrics and change metrics alone, as well as models in
which these metrics are enriched with popularity metrics, where the dependent variable
is always the number of post-release defects per class. We then compare the predic-
tion performances of such models to answer research question Q3 “Does the addition
of popularity metrics improve the prediction performance of existing defect prediction
techniques?” We follow the methodology proposed by Nagappan et al. [?] and also
used by Zimmermann et al. [?], consisting of: Principal component analysis, building
regression models, evaluating explanative power and evaluating prediction power.

Principal Component Analysis is a standard statistical technique to avoid the prob-
lem of multicollinearity among the independent variables. This problem comes from
intercorrelations amongst these variables and can lead to an inflated variance in the es-
timation of the dependent variable. We do not build the regression models using the
actual variables as independent variables, but instead we use sets of principal compo-
nents (PC). PC are independent and do not suffer from multicollinearity, while at the
same time they account for as much sample variance as possible. We select sets of PC
that account for a cumulative sample variance of at least 95%.

Building Regression Models. To evaluate the predictive power of the regression
models we do cross-validation: We use 90% of the dataset, i.e., 90% of the classes
(training set), to build the prediction model, and the remaining 10% of the dataset (val-
idation set) to evaluate the efficacy of the built model. For each model we perform 50
“folds”, i.e., we create 50 random 90%-10% splits of the data.

Evaluating Explanative Power. To evaluate the explanative power of the regres-
sion models we use the adjusted R2 coefficient. The (non-adjusted) R2 is the ratio of
the regression sum of squares to the total sum of squares. R2 ranges from 0 to 1, and
the higher the value is, the more variability is explained by the model, i.e., the better
the explanative power of the model is. The adjusted R2, takes into account the degrees
of freedom of the independent variables and the sample population. As a consequence,
it is consistenly lower than R2. When reporting results, we only mention the adjusted



R2. We test the statistical significance of the regression models using the F-test. All our
regression models are significant at the 99% level (p < 0.01).

Evaluating Prediction Power. To evaluate the predictive power of the regression
models, we compute Spearman’s correlation between the predicted number of post-
release defects and the actual number. Such evaluation approach has been broadly used
to assess the predictive power of a number of predictors [?,?,?]. In the cross-validation,
for each random split, we use the training set (90% of the dataset) to build the regression
model, and then we apply the obtained model on the validation set (10% of the dataset),
producing for each class the predicted number of post-release defects. Then, to evaluate
the performance of the performed prediction, we compute Spearman’s correlation, on
the validation set, between the lists of classes ranked according to the predicted and
actual number of post-release defects. Since we perform 50 folds cross-validation, the
final values of the Spearman’s correlation and adjusted R2 are averages over 50 folds.

Results. Table ?? displays the results we obtained for the defect prediction, considering
both R2 adjusted values and Spearman’s correlation coefficients.

The first row shows the results achieved using all the popularity metrics defined
in Section ??. In the following four blocks, we report the prediction results obtained
through the source code and change metrics, first alone, then by incorporating each
single popularity metric, and finally incorporating all the popularity metrics. For each
system and block of metrics, when popularity metrics augment the results of other met-
rics, we put in bold the highest value reached.

Analyzing the results of the sole popularity metrics, we notice that, in terms of
correlation, Equinox and Maven still present a strong correlation, i.e., higher than .40,
while Lucene is less correlated. The popularity metrics alone are not sufficient for per-
forming predictions in the Jackrabbit system. Looking at the results obtained by using
other metrics, we first note that Jackrabbit’s results are much lower if compared to those
reached in other systems, especially for the R2, and partly for the Rspm. Only the Rspm

reached with change metrics reach good results in this system.
Going back to the other systems, the R2 adjusted values are always increased and

the best results are achieved when using all popularity metrics together. The increase
with respect to the other metrics varies from 2%, when other metrics already reach
high values, up to 107%. Spearman’s coefficients also increase by using the informa-
tion given by popularity metrics: Their values augment, on average, more than fifteen
percent. However, there is not a single popularity metric that outperforms the others,
and their union does not give the best results.

4 Discussion

Popularity of software components do correlate with software defects. Three software
systems out of four show a strong rank correlation, i.e., coefficients ranging from .42 to
.53, between defects of software components and their popularity in e-mail discussions.
Only Jackrabbit is less rank correlated with a coefficient of .23.



Metrics R2adj Rspearman

Equinox Jackrabbit Lucene Maven Avg Equinox Jackrabbit Lucene Maven Avg
All Popularity Metrics .23 .00 .31 .55 .27 .43 .04 .27 .52 .32

All Change Metrics .55 .06 .43 .71 .44 .54 .30 .36 .62 .45
All C.M. + POP-NOM .56 .06 .43 .71 .44 .53 .32 .38 .69 .48
All C.M. + POP-NOCM .58 .06 .43 .70 .44 .57 .31 .43 .60 .48
All C.M. + POP-NOT .56 .06 .43 .71 .44 .54 .31 .39 .59 .46
All C.M. + POP-NOMT .56 .06 .43 .70 .44 .53 .29 .41 .60 .46
All C.M. + POP-NOA .56 .06 .43 .70 .44 .58 .29 .37 .43 .42
All C.M. + All POP .61 .06 .45 .71 .46 .52 .30 .38 .43 .41

Improvement 11% 0% +5% 0% +4% +7% +7% +19% +11% +11%

Source Code Metrics .61 .03 .27 .42 .33 .51 .17 .31 .52 .38
S.C.M. + POP-NOM .62 .03 .33 .59 .39 .53 .14 .35 .52 .38
S.C.M. + POP-NOCM .62 .04 .32 .56 .38 .51 .15 .36 .60 .41
S.C.M. + POP-NOT .61 .03 .31 .57 .38 .49 .15 .38 .52 .38
S.C.M. + POP-NOMT .62 .03 .35 .60 .40 .55 .14 .33 .43 .36
S.C.M. + POP-NOA .61 .04 .30 .56 .38 .53 .12 .38 .70 .43
S.C.M. + All POP .62 .03 .37 .61 .41 .58 .14 .32 .52 .39

Improvement +2% +25% +37% +45% +27% +14% -12% +23% +35% +15%

CK Metrics .54 .01 .39 .28 .31 .51 .13 .36 .60 .40
CK + POP-NOM .56 .02 .40 .54 .38 .48 .13 .35 .69 .41
CK + POP-NOCM .57 .02 .40 .50 .37 .50 .17 .33 .42 .35
CK + POP-NOT .56 .01 .40 .51 .37 .53 .13 .34 .52 .38
CK + POP-NOMT .57 .01 .40 .56 .39 .52 .14 .25 .49 .35
CK + POP-NOA .56 .02 .40 .51 .37 .52 .14 .41 .53 .40
CK + All POP .57 .02 .42 .58 .40 .51 .16 .30 .52 .37

Improvement +6% +50% +8% +107% +43% +4% +31% +14% +15% +16%

All Source Code Metrics .66 .04 .44 .45 .40 .48 .15 .35 .36 .33
All S.C.M. + POP-NOM .67 .04 .45 .60 .44 .59 .15 .34 .62 .43
All S.C.M. + POP-NOCM .66 .04 .45 .56 .43 .51 .16 .30 .31 .32
All S.C.M. + POP-NOT .66 .04 .44 .57 .43 .50 .14 .35 .52 .38
All S.C.M. + POP-NOMT .67 .04 .44 .62 .44 .53 .14 .35 .34 .34
All S.C.M. + POP-NOA .66 .04 .44 .57 .43 .51 .15 .34 .43 .36
All S.C.M. + All POP .67 .04 .46 .63 .45 .51 .16 .33 .52 .38

Improvement +2% 0% +5% +40% +12% +23% +7% +0% +72% +26%

Table 6. Defect prediction results

Popularity can predict software defects, but without major improvements over previ-
ously established techniques. In the second part of our results, consistently with the
correlation analysis, the quality of predictions done by Jackrabbit using popularity met-
rics are extremely low, both for the R2 adjusted values and for the Spearman’s cor-
relation coefficients. On the contrary, our popularity metrics applied to the other three
systems lead to different results: Popularity metrics are able to predict defects. However,
if used alone, they do not compete with the results obtained through other metrics. The
best average results are shown by the Change Metrics, corroborating previous works
stating the quality of such predictors [?,?].

Popularity metrics do improve prediction performances of existing defect prediction
techniques. The strongest results are obtained integrating the popularity information
into other techniques. This creates more reliable and complete predictors that signifi-
cantly increase the overall results: The improvements on correlation coefficients are, on
average, more than fifteen percent higher, with peaks over 30% and reaching the top
value of 72%, to those obtained without popularity metrics. This corroborate our initial



assumption that popularity metrics measure an aspect of the development process that
is different from those captured by other techniques.

Results put in evidence that, given the considerable difference of the prediction
performance across different software projects, bug prediction techniques that exploit
popularity metrics should not be applied in a “black box” way. As suggested by Na-
gappan et al. [?], the prediction approach should be first validated on the history of a
software project, to see which metrics work best for predictions for the system.

5 Threats to validity

Threats to construct validity regard the relationship between theory and observation,
i.e., measured variables may not actually measure conceptual variables. A first con-
struct validity threat concerns the way we link bugs with versioning system files and
subsequently with classes. In fact, the pattern matching technique we use to detect bug
references in commit comments does not guarantee that all the links are retrieved. We
also made the assumption that commit comments do contain bug fixing information,
which limits the application of our bug linking approach only to software projects where
this convention is used. Finally, a commit that is referring to a bug can also contain mod-
ifications to files that are unrelated to the bug. However, this technique represents the
current state of the art in linking bugs to versioning system files and is widely used in
literature [?].

Another threat concerns the procedure for linking e-mails to discussed classes. We
use linking techniques whose effectiveness was measured [?], and it is known that
they cannot produce a perfect linking. The enriched object-oriented model can contain
wrongly reported links or miss connections that are present. We alleviated this problem
manually inspecting all the classes that showed an uncommon number of links, i.e., out-
liers, and, whenever necessary, adjusted the regular expressions composing the linking
techniques to correctly handle such unexpected situations.

Threats to statistical conclusion validity concern the relationship between the treat-
ment and the outcome. In our experiments all the Spearman correlation coefficients and
all the regression models were significant at the 99% level.

Threats to external validity concern the generalization of the findings. In our ap-
proach we analyze only open-source software projects, however the development in in-
dustrial environment may differ and conduct to different comportments in the develop-
ers, thus to different results. Another external validity threat concerns the language: all
the software systems are developed in Java. Although this alleviates parsing bias, com-
munities using other languages could have different developer cultures and the style of
e-mails can vary. To obtain a better generalization of the results, in our future work, we
plan to apply our approach to industrial systems and other object-oriented languages.

6 Related work

6.1 Mining Data From E-Mail Archives

Li et al. first introduced the idea of using the information stored in the mailing lists as
an additional predictor for finding defects in software systems [?]. They conducted a



case study on a single software system, used a number of previously known predictors
and defined new mailing list predictors. Mainly such predictors counted the number
of messages to different mailing lists during the development of software releases. One
predictor TechMailing, based on number of messages to the technical mailing list during
development, was evaluated to be the most highly rank correlated predictor with the
number of defects, among all the predictors evaluated. Our works differs in genre and
granularity of defects we predict: We concentrate on defects on small source code units
that can be easily reviewed, analyzed, and improved. Also Li et al. did not remove the
noise from the mailing lists, focusing only on source code related messages. Pattison et
al. were the first to introduce the idea of studying software entity (function, class etc.)
names in emails [?]. They used a linking based on simple name matching, and found
a high correlation between the amount of discussions about entities and the number of
changes in the source code. However, Pattison et al. did not validate the quality of their
links between e-mails and source code. To our knowledge, our work [?] was the first
to measure the effectiveness of linking techniques for e-mails and source code. This
research is the first work that uses information from development mailing lists at class
granularity to predict and to find correlation with source code defects. Other works
also analyzed development mailing lists but extracting a different kind of information:
social structures [?], developers participation [?] and inter-projects migration [?], and
emotional content [?].

6.2 Defect Prediction

Change Log Approaches use information extracted from the versioning system to
perform defect prediction. They are based on the heuristic that recently or frequently
changed files are the most probable source of future bugs. Indeed, it is only by chang-
ing the behavior of the program that one can introduce new defects. Nagappan and Ball
performed a study on the influence of code churn (i.e., the amount of change to the
sytem) on the defect density in Windows Server 2003 [?]. Hassan introduced a measure
of the complexity of code changes [?] and used it as defect predictor on 6 open-source
systems. Moser et al. used a set of change metrics to predict the presence/absence of
bugs in files of Eclipse [?]. Ostrand et al. predict faults on two industrial systems, using
change and previous defect data [?]. The approach by Bernstein et al. uses bug and
change information in non-linear prediction models [?].

Single-version approaches employ the heuristic that the current design and behav-
ior of the program influence the presence of future defects, assuming that changing a
part of the program that is hard to understand is inherently more risky than changing a
part with a simpler design. Basili et al. used the CK metrics on 8 medium-sized infor-
mation management systems [?]. Ohlsson et al. used several graph metrics including
the McCabe cyclomatic complexity on a telecom system [?]. Subramanyam et al. used
the CK metrics on a commercial C++/Java case study [?], while Gyimothy et al. per-
formed a similar analysis on Mozilla [?]. Nagappan et al. used a catalog of source code
metrics to predict post release defects at the module level on five Microsoft systems,
and found that it was possible to build predictors for one individual project, but that
no predictor would perform well on all the projects [?]. Zimmermann et al. applied a
number of code metrics on the Eclipse IDE [?].



Other Approaches. Zimmermann and Nagappan used dependencies between bi-
naries to predict defect [?]. Marcus et al. used a cohesion measurement based on LSI
for defect prediction on C++ systems [?]. Neuhaus et al. used a variety of features of
Mozilla to detect vulnerabilities, a subset of bugs with security risks [?].

The main difference between our work and the mentioned approaches is that our
approach is the first one which exploits e-mail archives data for defect prediction.

7 Conclusion

We have presented a novel approach to correlate popularity of source code artifacts
within e-mail archives to software defects. We also investigated whether such metrics
could be used to predict post-release defects. We showed that, while there is a significant
correlation, popularity metrics by themselves do not outperform source code and change
metrics in terms of prediction power. However, we demonstrated that, in conjunction
with source code and change metrics, popularity metrics increase both the explanative
and predictive power of existing defect prediction techniques.

Acknowledgments. We gratefully acknowledge the financial support of the Swiss
National Science foundation for the project “DiCoSA” (SNF Project No. 118063).

References

1. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software Engineering 22(10) (1996) 751–761

2. Ohlsson, N., Alberg, H.: Predicting fault-prone software modules in telephone switches.
IEEE Transactions on Software Engineering 22(12) (1996) 886–894

3. Subramanyam, R., Krishnan, M.S.: Empirical analysis of ck metrics for object-oriented
design complexity: Implications for software defects. IEEE Transactions on Software Engi-
neering 29(4) (2003) 297–310
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