
The Metabase: Generating Object Persistency Using Meta Descriptions

Marco D’Ambros and Michele Lanza
Faculty of Informatics

University of Lugano, Switzerland

Martin Pinzger
s.e.a.l. - software evolution and architecture lab

University of Zurich, Switzerland

Abstract

Because of its language independent metamodel FAMIX,
the Moose environment allows researchers to analyze soft-
ware systems in a uniform way and to exchange data and re-
sults. To support interoperability, different interchange file
formats such as XMI, CDIF, and recently MSE, have been
proposed and used. The use of text files, to exchange data,
has three major issues: (1) the files containing the model
of a system should always be parsed before being used in
Moose, (2) the files must be parsed entirely, even if only
a small part is needed, and (3) compatibility is a concern
since the old interchange formats are no longer supported
in recent versions of Moose.

We propose an alternative approach for FAMIX data ex-
change, based on object persistency. FAMIX models are
stored in a database in a transparent way and they can be
remotely accessed. Model entities are retrieved from the
database “on-demand”, i.e., only the parts needed are read
and not the entire model. The mapping between Smalltalk
objects and database rows is automatically generated from
a meta description, which does not limit the approach to
the FAMIX meta model, but to any meta model defined by a
meta description.

1 Introduction

The FAMIX meta model [1] has been used for several
years by researchers to exchange descriptions of software
systems. Using a language independent meta model allows
them to analyze software systems written in different lan-
guages, to apply several tools, and to compare results. In the
context of the Moose framework, different file interchange
formats have been used to exchange FAMIX models. The
first two, i.e., CDIF and XMI [3], are not supported any
more in recent versions of MOOSE. The last, and currently
used, file format is MSE1.

We identified three major issues in using text files for
exchanging models:

1See http://smallwiki.unibe.ch/moose/mseformat/

1. Parsing. The text file containing the model has to be
parsed to import the model into the Moose environ-
ment.

2. Performance. It is not possible to import only parts of
the model, i.e., parse only parts of the text file: The
entire text file has to be parsed. For models of large
software systems this can have a severe impact on per-
formance.

3. Compatibility. Recent versions of Moose do not sup-
port old interchange file formats anymore. This has a
strong impact on tools based on old versions of Moose.

We propose an approach to exchange models, based
on object persistency instead of text files. The technique
reads/writes objects from/to a database in a transparent
way, avoiding import/export operations. The objects are re-
trieved “on demand,” without the need of reading the entire
model.

The persistency mechanism, i.e., the mapping between
the database and the actual objects, is automatically gen-
erated from a meta model description written in Meta.2

Therefore, the approach is not limited to FAMIX, but can
be used for any meta model described by Meta.

The approach is implemented in Smalltalk, in the con-
text of Moose, using GLORP [2] for the object persistency.
The concepts presented in this paper are strictly related to
this language and environments, but they can be generalized
to other languages and environments, e.g., Java and Hiber-
nate.3

Structure of the Paper. In Section 2 we introduce the
object persistency technique based on GLORP. We then
present our Metabase approach in Section 3 and we pro-
vide an example in Section 4. We conclude in Section 5 by
summarizing our contributions and discussing future work.

2http://smallwiki.unibe.ch/moose/tools/meta/
3http://www.hibernate.org/

1

2 Object Persistency

The Metabase relies on GLORP4 for object persistency.
GLORP is a simple but powerful object-relational mapping
layer for Smalltalk. It allows us to define the mapping be-
tween Smalltalk objects and table and rows in a relational
database (DB). Once this mapping is defined, objects can be
read from and written to the DB in a completely transparent
way, without having to write any SQL statement.

Example. We want to define the mapping for simpli-
fied versions of FAMIXClass and FAMIXMethod. FAMIX-
Class has a name, belongs to a package and has a collection
of methods, while FAMIXMethod just has a name. We need
to create a new class, i.e.,FamixDescriptorSystem,
inheriting from Glorp.DescriptorSystem. In this
class we add methods to define the structure of the database
table corresponding to the FAMIX class and method and to
define the mapping between the tables and the classes. This
is shown in the following code snippets.

tableForFAMIXClass: aTable
aTable createFieldNamed: ’Id’ type: platform serial.
aTable createFieldNamed: ’Name’
type: (platform varChar: 50).

aTable createFieldNamed: ’PackagedIn’
type: (platform integer).

tableForFAMIXMethod: aTable
aTable createFieldNamed: ’Id’ type: platform serial.
aTable createFieldNamed: ’Name’
type: (platform varChar: 50).

aTable createFieldNamed: ’BelongsTo’
type: (platform integer).

descriptorForFAMIXClass: aDescriptor
| t |
t := self tableNamed: ’Class’.
tMethod := self tableNamed: ’Method’.
tAttribute := self tableNamed: ’Attribute’.
tPackage := self tableNamed: ’Package’.
aDescriptor table: t.
aDescriptor addMapping:
(DirectMapping from: #dbId to: (t fieldNamed: ’Id’)).

aDescriptor addMapping:
(DirectMapping from: #name to: (t fieldNamed: ’Name’)).

(aDescriptor newMapping: OneToOneMapping)
attributeName: #packagedIn;
referenceClass: FAMIXPackage;
mappingCriteria: (Join from: (t fieldNamed: ’PackagedIn’)
to: (tPackage fieldNamed: ’Id’)).

(aDescriptor newMapping: OneToManyMapping)
attributeName: #methods;
referenceClass: FAMIXMethod;
join: (Join from: (t fieldNamed: ’Id’)
to: (tMethod fieldNamed: ’BelongsTo’)).

ˆaDescriptor

descriptorForFAMIXMethod: aDescriptor
| t |
t := self tableNamed: ’Method’.
aDescriptor table: t.
aDescriptor addMapping:
(DirectMapping from: #dbId to: (t fieldNamed: ’Id’)).

aDescriptor addMapping:
(DirectMapping from: #name to: (t fieldNamed: ’Name’)).

4Generic Lightweight Object-Relational Persistence. For details refer
to [2] and to the GLORP web site http://www.glorp.org/

In the code snippet we see three kinds of mapping: Di-
rect, one-to-one and one-to-many.

Direct Mapping. It is used to express simple relationships
between instance variables and table columns. It is
used when the “type”5 of the instance variable is di-
rectly supported by the DB, for example for Integer,
Text, Varchar, Timestamp, etc.

One-to-one Mapping. It is used to express the relationship
between FAMIXClass and FAMIXPackage. This map-
ping, declared in the FAMIXClass descriptor, defines
the following properties:

• The attribute name: The name of the instance
variable getter.

• The reference class: Specifies the class of the ob-
jects, and therefore the corresponding table in the
DB. In the considered case the class is FAMIX-
Package, which corresponds to the Package table
(not shown for brevity).

• The join expression: Defines which columns of
the two tables are linked. This information is
used by GLORP to create the appropriate SQL
join query to fetch the data from the DB and cre-
ate the objects.

One-to-many Mapping. It expresses that a FAMIXClass
can have several FAMIXMethods. The structure of
the mapping is the same as the one-to-one mapping,
with two differences. First, the attribute name refers
to a collection of objects instead of a single object.
All these objects have to be instances of the class
“referenceClass” (FAMIXMethod). Second, the data
will be written in the table corresponding to the ref-
erence class (FAMIXMethod), instead of the current
class (FAMIXClass). This is because each row in the
method table refers to a row in the class table (the con-
tainer class), while each row in the class table can refer
to multiple rows in the method table.

A last type of mapping, not used in the code snippet, is
many-to-many. It expresses the most generic relationship
by means of a link table. If two classes have this kind of
relationship, the relationship itself is stored in a separated
link table in the DB.

What about Inheritance? We want to add to our sim-
plified FAMIX model a superclass of FAMIXClass, namely
FAMIXAbstractNamedEntity, which has a name as instance
variable. When adding this superclass, we also remove the
name instance variable from the FAMIXClass class, since
it is inherited from FAMIXAbstractNamedEntity. GLORP

5To use GLORP we have to assume that an instance variable is always
of the same class, called type.

2

provides two techniques to manage inheritance: Filtered
and Horizontal. In the filtered inheritance all of the classes
are represented in a single table, with a discriminator field
for which subclass they are. The table has the union of all
possible fields for all classes. In the horizontal inheritance
each concrete class is represented in its own table. Each ta-
ble will duplicate the fields that are in common between the
concrete classes. Figure 1 shows the two approaches for our
examples.

AbstractNamedEntity

Id Name

1 EntityA

Class

Id Name PackagedIn

1 ClassA PackageA

(a) Horizontal Inheritance

AbstractNamedEntityAndClass

Id Name PackagedIn Class

1 EntityA - FAMIXAbtractNamedEntity

2 ClassA PackageA FAMIXClass

(b) Filtered Inheritance

Figure 1. Types of inheritance in GLORP

In horizontal inheritance (Figure 1(a)) the name column
is duplicated in both tables, in filtered inheritance (Fig-
ure 1(b)) the PackagedIn value is nil for the AbstractName-
dEntity EntityA and there is the “Class” identifier column.

Reading & Writing. Once the mapping between the ta-
bles and the objects is defined, i.e., the descriptor class is
completed, reading and writing objects is straightforward.
The following code snippet reads all the FAMIXClass ob-
jects from a DB, modifies them and stores them back in the
DB.

famixClasses := session readManyOf: FAMIXClass.
"the famixClasses objects are modified"
session registerAll: famixClasses.

“session” is an object storing the connection with the
DB. It is also possible to retrieve only the objects satisfy-
ing a given block with:

famixClasses := session readManyOf: FAMIXClass
where: [:each | each isAbstract].

When a FAMIXClass is read from the DB, all the
classes which have a relationship with it (in our exam-
ple FAMIXMethod and FAMIXPackage) are retrieved on
demand in a transparent way. This means that the mes-
sage “readManyOf:” sent to the session object retrieves
only FAMIXClasses, not FAMIXMethods and FAMIX-
Packages. If we send the getter message “methods” or
“packagedIn” to a FAMIXClass object, the collection
of FAMIXMethod objects or the FAMIXPackage object are
dynamically read from the DB.

3 The Metabase

The Metabase takes as input a meta-model described
in Meta and outputs a GLORP class descriptor, which de-
fines the mapping between the object instances of the meta
model, i.e., the model, and the database. Figure 2 shows
how the Metabase works.

MetaBase

Model
(e.g. FAMIX of Azureus)

Meta Model
(e.g. FAMIX)

Description in Meta

Database

Input

Output GLORP Mapping
Descriptor

Read
Write

Figure 2. Using the Metabase

Using the Metabase is straightforward. Suppose we
have a meta-model described by Meta, i.e., some classes
with instance variables described by “meta” methods on the
class side. To create the GLORP class descriptor with the
Metabase, we can use the following code snippet:

classes := OrderedCollection with: ClassA with: ClassB ...
ˆClassDBDescriptorGenerator uniqueInstance
createClassDescriptorForClasses: classes
named: ’Descriptor’ in: aPackage.

This code generates the descriptor class named “Descrip-
tor,” located in the “aPackage” package. This descriptor can
be used to define the mapping between the meta model and
the database. To get a connection with the database, which
respects the mapping we use the code:

db := MetaDB.MetaDBBridge uniqueInstance.
db descriptorClass: Descriptor.
db login: ((Login new)
username: ’user’; password: ’pass’;
connectString: ’databaseServerLocation’;
database: PostgreSQLPlatform new; yourself).

Once the database connection is created, we can create
the tables on the database (if the database is empty) with:

db createTables

and read and write objects of the model with:

someClasses := db session readManyOf: ClassA.
someClasses addAll: (db session readManyOf: ClassB).
"someClasses are modified"
db session registerAll: someClasses.

Summary. The Metabase generates GLORP descriptors
in a fully automatic way. It manages one-to-one, one-to-
many and many-to-many relationships among objects. It
manages inheritance among meta model classes using fil-
tered inheritance.

3

4 Example

We present a simple example6 which shows how the
Metabase supports inheritance and all types of relationships
(direct, one-to-one, one-to-many, many-to-many).

name
age
passport
subscriptions

Person

studentId
school
enrolExams

Student

number
owner
expireDate

Passport

name
enroledStudents

Exam
id
student

StudentId

number
name
owner
issuedDate

Subscription

0..*11

0..*1

0..*

10..1

Figure 3. A simplified UML class diagram of
the example meta model

Figure 3 shows the UML diagram of the example model.
The code snippet below shows the class methods used to
describe the meta model in Meta. Due to lack of space we
show only the methods for the Person, Subscription, and
Passport classes.
Person>>metamodelAge
ˆ(EMOF.Property name: #age type: Number)

Person>>metamodelName
ˆ(EMOF.Property name: #name type: String)

Person>>metamodelPassport
ˆ(EMOF.Property name: #passport
opposite: #owner type: Passport)

Person>>metamodelSubscription
ˆ(EMOF.Property name: #subscription opposite: #owner

type: Subscription multiplicity: #many)
isDerived: true; yourself.

Subscription>>metamodelIssuedDate
ˆ(EMOF.Property name: #issuedDate type: Date)

Subscription>>metamodelName
ˆ(EMOF.Property name: #name type: String)

Subscription>>metamodelNumber
ˆ(EMOF.Property name: #number type: Number)

Subscription>>metamodelOwner
ˆ(EMOF.Property name: #owner
opposite: #subscription type: Person)

Passport>>metamodelExpireDate
ˆ(EMOF.Property name: #expireDate type: Date)

Passport>>metamodelNumber
ˆ(EMOF.Property name: #number type: Number)

Passport>>metamodelOwner
ˆ(EMOF.Property name: #owner

opposite: #passport type: Person)
isDerived: true; yourself.

Once the meta description is defined as shown in the
code snippet, we can generate the GLORP descriptor, read
and write objects instances of the meta model from and to
the database as described in the previous Section. Figure 4
shows a screenshot of some database tables automatically
generated and populated.

6The model of the example can be found in the package
”MetaDBTest::ExampleDBs”, while the generation of the descriptor is on
the class side of the class ClassDBDescriptorGenerator.

Person

PersonExamLink StudentId Exam

Figure 4. A screenshot of the generated
database

5 Conclusions

In this paper we have presented a novel approach to sup-
port interoperability in reverse engineering, based on object
persistency. Instead of using text files to exchange software
system models, we propose the use of the Metabase. The
Metabase takes a meta model description and automatically
generates the object persistency descriptor, i.e., the mapping
between the objects (instances of the meta model) and the
generated database. We implemented the Metabase on top
of the Moose reengineering environment, relying on Meta
for the meta model description part and on GLORP for the
object persistency part.

Future Work. We have used and tested the Metabase
with small and relatively simple meta models (but which al-
ready include inheritance and all the types of relationships).
We plan to test the Metabase with larger and more complex
meta models. We also plan to improve the performance of
the Metabase, especially with respect to GLORP proxies
and cursors, the bottleneck of the current implementation.

References

[1] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 — The
FAMOOS Information Exchange Model. Technical report,
University of Bern, 2001.

[2] A. Knight. Glorp: generic lightweight object-relational per-
sistence. In OOPSLA ’00: Addendum to the 2000 proceed-
ings of the conference on Object-oriented programming, sys-
tems, languages, and applications (Addendum), pages 173–
174, New York, NY, USA, 2000. ACM Press.

[3] S. Tichelaar, S. Ducasse, and S. Demeyer. FAMIX: Exchange
experiences with CDIF and XMI. In Proceedings of the
ICSE 2000 Workshop on Standard Exchange Format (WoSEF
2000), June 2000.

4

