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Abstract

Software systems are subject to continuous changes to adapt to new and changing requirements.
This phenomenon, known as software evolution, leads in the long term to software aging: The
size and the complexity of systems increase, while their quality decreases. In this context, it is no
wonder that software maintenance claims the most part of a software system’s cost. The analysis
of software evolution helps practitioners deal with the negative effects of software aging.

With the advent of the Internet and the consequent widespread adoption of distributed de-
velopment tools, such as software configuration management and issue tracking systems, a vast
amount of valuable information concerning software evolution has become available. In the
last two decades, researchers have focused on mining and analyzing this data, residing in vari-
ous software repositories, to understand software evolution and support maintenance activities.
However, most approaches target a specific maintenance task, and consider only one of the sev-
eral facets of software evolution. Such approaches, and the infrastructures that implement them,
cannot be extended to address different maintenance problems.

In this dissertation, we propose an integrated view of software evolution that combines dif-
ferent evolutionary aspects. Our thesis is that an integrated and flexible approach supports an
extensible set of software maintenance activities. To this aim, we present a meta-model that in-
tegrates two aspects of software evolution: source code and software defects. We implemented
our approach in a framework that, by retrieving information from source code and defect repos-
itories, serves as a basis to create analysis techniques and tools. To show the flexibility of our
approach, we extended our meta-model and framework with e-mail information extracted from
development mailing lists.

To validate our thesis, we devised and evaluated, on top of our approach, a number of novel
analysis techniques that achieve two goals:

1. Inferring the causes of problems in a software system. We propose three retrospective
analysis techniques, based on interactive visualizations, to analyze the evolution of source
code, software defects, and their co-evolution. These techniques support various mainte-
nance tasks, such as system restructuring, re-documentation, and identification of critical
software components.

2. Predicting the future of a software system. We present four analysis techniques aimed at
anticipating the locations of future defects, and investigating the impact of certain source
code properties on the presence of defects. They support two maintenance tasks: defect
prediction and software quality analysis.

By creating our framework and the mentioned techniques on top of it, we provide evidence
that an integrated view of software evolution, combining source code and software defects in-
formation, supports an extensible set of software maintenance tasks.
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Chapter 1

Introduction

In the light of the sheer size and complexity of today’s software systems, it is no wonder that soft-
ware maintenance takes up the most part of a software system’s cost. In the last decades, while
society has been increasingly relying on software, the cost of software maintenance, compared
to the global cost of software, has grown. Researchers estimated it to be between 50% and 75%
[Dav95; Som96] in 1995–96, while more recent estimates reached 85–90% [Erl00; SPL03].

The high cost of maintenance results from many factors. Among these, Corbi put in evidence
and estimated how the system understanding, needed to perform maintenance tasks, takes up
to 50–60% of maintenance time [Cor89]. Not updated, or not even existing documentation
[KC98], and frequent turnover of developers concur to define this condition. Moreover, as a
software system increases in size and complexity, maintenance becomes harder. For example,
according to Purushothaman and Perry [PP05], 40% of bugs are introduced while fixing other
bugs.

The first to observe that maintaining software becomes more complex over time, as software
is continuously changed, were Lehman and Belady in 1985 [LB85]. In a set of laws they stated
that a system must continuously change to remain useful in a mutating environment, and—if
nothing is done to prevent it—the complexity of the system increases and its quality decreases,
i.e., the system undergoes a phenomenon known as “software aging” [Par94]. The only way
to control the negative consequences of software aging is to place change and evolution in the
center of the software development process [Nie04]. Without specific support for evolution,
software systems become more complex, and thus harder to change and maintain.

In Lehman’s laws [LB85] the term “software evolution” was used for the first time, but it
took until the nineties until the term received widespread acceptance. In the last twenty years,
problems concerning software evolution continued to challenge researchers. Improvements of
the software development process models [Roy70; Gil77; YCM78; Gil81; Boe88; Bec99; Coc01],
and advances of development tools have been influencing this research domain. Software con-
figuration management tools (SCM) were first introduced in 1975 [Roc75], and are now con-
sidered fundamental for software development [ELH+05]. The first bug tracking system was
implemented in 1992, and nowadays such systems count dozens of implementations.

In the nineties, with the advent of the Internet and the improvement in network bandwidth,
software development started to be distributed. In this scenario, SCMs obtained widespread
attention and usage, and software repositories became available for analysis. The first approach
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to analyze such repositories was proposed in 1997 [BAHS97]. Nowadays, as the usage of devel-
opment tools—such as SCMs and bug tracking systems—has become an established practice, a
research area is dedicated to mining software repositories (MSR) [HMHJ05].

Researchers, targeting different goals, proposed a number of approaches to mine software
repositories. Some techniques study developers’ behavior with the aim of enhancing develop-
ment tools and environments. Other approaches analyze the data residing in various repositories
with two main objectives, related to software evolution and maintenance:

1. Infer the causes of current problems in a software system. Such causes are the focus of
software maintenance activities, to keep the system in an evolvable and maintainable state.
Approaches in this area aim at detecting poorly designed components [VRD04; FG06],
identifying critical bugs [DLP07a], spotting highly coupled modules [GHJ98; PGFL05;
BH06; DL06b], etc.

2. Predict the future of a software system. This prediction allows practitioners to anticipate
problems and to optimize available maintenance resources. Research in this area addresses
questions like: Which component will change the most [GDL04]? Which software entity
will generate more bugs [GKMS00; NB05a; NBZ06; NZHZ07; ZPZ07; BEP07]? etc.

In this dissertation, we survey the state of the art in analyzing software evolution and mining
software repositories (cf. Chapter 2). Based on the survey, we extract four requirements for an
approach that models software evolution and supports various maintenance activities:

1. Integration. There is a problematic gap between the information produced during software
development and the information needed for mining software repositories. One of the
issues is the lack of integration among the distinct pieces of information produced during
software development, such as SCM data, source code, problem reports, etc. With few
exceptions [FPG03; GHJ04; uMSB05], all the approaches proposed in the literature focus
on a single data source. We argue that the integration of different data sources, which
describe different evolutionary aspects, better supports maintenance activities than the
analysis of a single data source.

2. Flexibility. Most software evolution and MSR approaches tackle a specific maintenance
problem and cannot be adapted to address a different one. We envision a more general
approach, on top of which one can build several analysis techniques, supporting different
maintenance tasks.

3. Modeling defects. All the surveyed approaches, which consider software defects, do not
model their evolution. We argue that defects are first class entities that—as source code—
evolve over time.

4. Replicability. Replicability is a significant issue in the MSR research community [Rob10].
Robles observed that most of the experiments in MSR are difficult—when not impossible—
to replicate, as the data is not available. We argue that publicly available data makes it
possible not only to replicate the experiments, but also to compare and improve analysis
techniques.
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1.1 Our Thesis

The goal of our thesis work is to create an approach that, by modeling software evolution,
supports an extensible set of software maintenance tasks.

Various software repositories, containing different types of data, revolve around the evolu-
tion of software systems. Among them, we decide to focus on source code and software defects.
Source code plays a key role in software maintenance activities, and it is often the only reli-
able information about a software system, since the documentation is outdated or not existing
[KC98]. Moreover, source code is the place where a considerable fraction of maintenance ef-
fort is spent, as for example 50% of maintenance time is used just to understand the code
[FH83; Sta84; Cor89]. Software defects provide valuable information about software quality
and might point to ailing system components, which represents candidates for bug fixing activi-
ties.

We formulate our thesis as:

An integrated view of software evolution, combining historical information regarding
source code and software defects, supports an extensible set of software maintenance
tasks, targeted at inferring the causes of problems and predicting the future of software
systems.

We analyze several aspects of source code, defects and their evolution, as for example change
coupling (the evolutionary dependency of software artifacts that frequently change together) or
design flaws. Table 1.1 lists all of them and shows the types of data we use and the soft-
ware maintenance tasks we support. Examples of such tasks are defect prediction, system re-
documentation, and restructuring.

Table 1.1. The different aspects of the evolution of source code, software defects and their
co-evolution considered in our thesis, and the corresponding maintenance activities supported

Evolutionary aspect 
analyzed

Data Software maintenance task supported

Co-evolution of source 
code artifacts 
(change coupling)

SCM meta-data
System re-documentation and restructuring

Co-evolution of source 
code artifacts 
(change coupling)

SCM meta-data
Identification of candidates for re-engineering

Co-evolution of source 
code artifacts 
(change coupling)

SCM meta-data and bug repository Defect prediction

Evolution of defects Bug repository Characterization and identification of critical 
software components and critical bugs

Co-evolution of code 
and defects

SCM meta-data and bug repository Characterization and identification of critical 
software components

Evolution of source 
code metrics

Source code snapshots, SCM meta-
data and bug repository

Defect prediction

Popularity metrics 
extracted from e-mails

Source code snapshots, SCM meta-
data, mailing lists and bug repository

Defect prediction

Evolution of design 
flaws

Source code snapshots, SCM meta-
data and bug repository

Software quality analysis
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To validate our thesis, we devised an approach that fulfills the four requirements introduced
in the previous section. In particular, our approach

• is integrated. It provides an integrated meta-model that combines multiple versions (snap-
shots) of the source code, the detailed evolution of each source code artifact as recorded
by an SCM (SCM meta-data), and the evolution of software defects (bug repository).

• is flexible. We implemented the approach as a framework that serves as a basis to create
software evolution analysis techniques. The framework is flexible with respect to both the
meta-model and the analysis techniques that can be created on top of it (we created seven
of them). As a proof on concept, we extended the meta-model to describe e-mail informa-
tion and we devised a technique—on top of the framework—that uses this information to
support defect prediction (cf. Chapter 8).

• models defects as first class entities. In our meta-model we provide an extensive description
of software defects, which includes their histories.

• enables replicability. Our framework features a publicly accessible web interface that allows
one to download the models residing in the framework. Other researchers can use such
models to replicate the experiments we present.

The validation of our thesis consists in devising and applying several analysis techniques on
top of our framework. With these techniques, we show that, by analyzing the evolution of source
code and defects, we support the software maintenance tasks listed in Table 1.1. To complete
the validation of the thesis, we validate each proposed analysis technique on its own.

1.2 Contributions

The contributions of this dissertation can be classified in three categories: modeling, analysis
and tools.

1.2.1 Modeling

1. We define Mevo [DL08b; DL10], an integrated meta-model of software evolution that com-
bines source code information, software defect data and SCM meta-data. We present Mevo
in Chapter 3.

2. We model software defects as first class entities, including their history in the Mevo meta-
model.

1.2.2 Analysis

3. We developed the Evolution Radar (cf. Chapter 4), a visualization technique that in-
tegrates module- and file-level change coupling information [DLL06; DL06b; DGLP08;
DLL09]. The technique supports system restructuring, re-documentation and detection of
reengineering candidates. We evaluate the Evolution Radar by analyzing two open-source
systems and by performing an experiment with a practitioner.
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4. We created the System Radiography and Bug Watch views [DLP07a], two visualizations to
analyze the evolution of software defects at different levels of granularity (cf. Chapter 5).
The views are useful to detect critical software components, to characterize bugs based
on their histories, and to identify critical defects. We apply them on the bug database of
Mozilla.

5. We devised a visualization technique, called Discrete Time Figure [DL06c; DL09], that
supports the understanding of source code and defects co-evolution (cf. Chapter 6). On
top of the visualization, we define a catalog of co-evolutionary patterns that are useful to
characterize software entities. We use Discrete Time Figures and the catalog of patterns to
characterize three large open-source systems.

6. We present two novel defect prediction approaches based on the evolution of source code
metrics [DLR10] (e.g., fanIn/Out, coupling) and their comparison with existing defect
prediction techniques (cf. Chapter 7).

7. We produced a benchmark for defect prediction [DLR10], in the form of a publicly avail-
able dataset consisting of hundreds of versions of several software systems (cf. Chapter 7).

8. We extended Mevo to model e-mail information (cf. Chapter 8). Based on metrics ex-
tracted from the extended meta-model, we devised a defect prediction technique and we
evaluated its performance on four open-source systems [BDL10].

9. We investigate the correlation between change coupling and software defects on three
open-source software systems [DLR09]. We also present a novel defect prediction ap-
proach, based on change coupling information, and its evaluation and comparison with
existing prediction techniques (cf. Chapter 9).

10. We empirically analyze the relationship between a catalog of design flaws and software
defects, on six open-source software systems (cf. Chapter 10). We also study the evolution
of the flaws over multiple versions of the systems, to empirically assess whether adding
design flaws is likely to generate defects [DBL10].

1.2.3 Tools

11. We built Churrasco [DL08a], an extensible framework that implements the Mevo meta-
model and serves as a basis for all our analysis techniques.

12. We created three interactive and scalable visualization tools: Evolution Radar [DL06a],
Bug’s Life and BugCrawler [DL07]. These tools implement respectively the Evolution
Radar visualization, the System Radiography and Bug Watch views and the Discrete Time
Figure visualization.

13. We implemented Pendolino, a scriptable data analysis tool that computes and exports a
variety of metrics extracted from Mevo models.

1.2.4 A Side Track: Collaborative Software Evolution Analysis

During the implementation of our software evolution framework, the need of collaboration in
software development has gained increasing attention. Tools that support collaboration, such as
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Jazz for Eclipse [Fro07], were only recently introduced, but hint at a larger current trend. Just
as the software development teams are geographically distributed, consultants and analysts are
too. Specialists in different domains of expertise should be allowed to collaborate without the
need of being physically present together. For these reasons, we implemented support for collab-
orative software evolution analysis in our framework and we evaluated it with two experiments
[DLLR09; DLLR10]. As this topic lies outside of the main target of our thesis, but is still relevant
to software evolution analysis, we present it in an appendix (Appendix A).

1.3 Roadmap

Figure 1.1 shows a roadmap of our thesis work. Research topics are placed, according to their
similarity, in two main spaces: Modeling software evolution and supporting software mainte-
nance. The latter is further divided in two sub-spaces, according to the goal we want to achieve:
inferring causes of problems or predicting the future. Research topics that target both the goals
are placed on top of both the spaces. In Figure 1.1, research topics are connected by a path
representing the reading flow of this dissertation, where we also indicate the chapters. When
applicable, we show the publications and the tools that we implemented next to the topic. The
research about collaborative software evolution analysis is connected to the rest of the thesis
with a dashed path, since it is a side track not part of the main topic of the thesis.

We structured the remainder of this dissertation as follows:

• In Chapter 2 (p.11) we provide a historical perspective on our work, by presenting the
history of software evolution and mining software repositories. Subsequently, we explore
approaches and techniques in the domain related to our thesis: modeling software evo-
lution, software visualization, change coupling analysis, bug prediction and analysis, and
design flaws detection and analysis.

• In Chapter 3 (p.39) we describe how we tackle the problem of modeling software evolution
with Mevo, an integrated meta-model of code and defect evolution. We also present an
extensible framework that implements the meta-model, and serves as a basis to create
analysis techniques and tools. The framework provides a web interface that can be used
to retrieve Mevo models, thus enabling the replication of our experiments.

Part II: Inferring Causes of Problems. In this part of our dissertation, we present different
techniques, built on top of our software evolution approach, aimed at inferring causes of prob-
lems in software systems, by analyzing their evolution.

• Chapter 4 (p.67) presents the Evolution Radar, a visualization technique that supports sys-
tem restructuring, re-documentation and identification of reengineering candidates. The
Evolution Radar visualizes co-change information, a particular aspect of source code evo-
lution that characterizes software artifacts frequently changed together. We apply the
Evolution Radar on two open-source software systems and we let a developer use the tool
for a re-documentation task, reporting on his experience.

• In Chapter 5 (p.89) we analyze the evolution of software defects with a visualization tech-
nique called Bug’s Life. The technique provides two views to study software defects at dif-
ferent granularity levels, enabling the characterization and the detection of critical bugs.
We use Bug’s Life to analyze the bug repository of Mozilla.
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• Chapter 6 (p.103) discusses the co-evolution of source code and software defects. We in-
troduce a visualization technique, called Discrete Time Figure, to study such co-evolution
at different granularity levels. Based on the visualization, we define a catalog of co-
evolutionary patterns that characterize software artifacts. We apply Discrete Time Figure
to three open-source systems, we extract the patterns they contain and we characterize
them based on the frequency of the patterns.
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Part III: Predicting the Future. In the third part of our dissertation, we present different ap-
proaches to predict the future of a software system, and in particular to predict the locations of
future software defects.

• Chapter 7 (p.129) describes two novel defect prediction approaches based on the evolution
of source code metrics. We apply the prediction techniques on five open-source systems
and compare their performance with several existing defect prediction models. To let other
researchers repeat the experiments or compare other approches with ours, we made the
entire processed data set publicly available.

• We claimed that our meta-model and framework are extensible. In Chapter 8 (p.147), as
a proof of concept, we extend them to include e-mail information and we devise a defect
prediction technique that uses this new information. We apply the prediction technique
on four software systems, showing that it provides an improvement over prediction ap-
proaches based only on source code information.

• In Chapter 9 (p.159) we observe that many studies considered change coupling harmful.
However, since there was no research about the correlation between change coupling and
software defects, we conduct such a study, providing empirical evidence—on three soft-
ware systems—that such a correlation exists. Moreover, we show that change coupling
data can be used to improve existing defect prediction models based on historical infor-
mation and source code metrics.

• In Chapter 10 (p.171) we analyze the relationship between a catalog of design flaws and
software defects, to investigate whether certain types of flaws are more harmful than
others. We also study the evolution of the flaws over multiple versions of a system, to
detect if adding design flaws is likely to generate bugs. By examining six open-source
systems, we find out that, while there is no empirical evidence of one flaw being more
harmful than others, introducing design flaws is likely to generate defects, with patterns
that vary from system to system.

Part IV: Epilogue

• In Chapter 11 (p.185) we take a step back from the individual analysis techniques by con-
sidering our work as a whole. We conclude this dissertation by discussing our approach,
summarizing the contributions of this work and outline future research directions.

Part V: Appendices

• Appendix A (p.195) discusses how we can support collaboration in software evolution anal-
ysis. We present a visualization technique that allows different users to collaboratively an-
alyze a software system and we report on two collaboration experiments performed with
students. We build the visualization technique on top of our Churrasco framework. As
collaboration is not the main track of the dissertation, we present it in an appendix.

• Appendix B (p.209) provides technical details about the Meta-base component of Churrasco
[DLP07b]. The Meta-base supports interoperability by providing flexibility and persistence
to any meta-model described according to the EMOF specification.

Note. This dissertation makes intensive use of color pictures. We recommend reading it on screen or as a
color-printed paper version.



Chapter 2

State of the Art

In our dissertation we analyze different aspects of the evolution of source code and software
defects. These analyses are challenging because developers do not write code to support soft-
ware evolution analysis. For example, source code repositories contain the history of the code,
but extracting the evolution of software artifacts is not trivial and in some cases heuristics have
to be used. Another example concerns data integration: Many software projects have both a
code and a bug repository, but they are disconnected. To know the relationship between the two
data sources, i.e., which software artifact is affected by which defects, researchers have to devise
linking techniques.

2.1 Genesis of our Approach

Before presenting the research areas most related to our work, it is important to understand why
there is a gap between software development and mining software repositories, i.e., why code
is not developed to support software evolution analysis. To understand the reasons behind this
gap, we look at the history of software evolution.

2.1.1 The Seventies

At the first conference on software engineering in 1968 [NR69] software maintenance was con-
sidered a post production activity. The same idea was shared by Royce, who in 1970 introduced
the Waterfall life-cycle model for software development [Roy70]. In this model, maintenance is
the last phase of the process, after the deployment of the software product.

The seventies were also the decade in which Software Configuration Management (SCM)
emerged as a discipline. In 1975, the same year when the first International Conference on
Software Engineering (ICSE) was held, Rochkind introduced the first SCM, called Source Code
Control System (SCCS) [Roc75]. To be precise, the discipline of configuration management
started back in the fifties, when production in the aerospace industry experienced difficulties
caused by inadequately documented engineering changes. However, SCCS was the first case in
which configuration management was applied to software.

In the second half of the seventies, the waterfall model received the first criticisms. In 1976,
Mills argued that software development should be incremental with continuous user partici-
pation [Mil76]. One year later, in his book “Software Metrics”, Gilb proposed evolutionary

11
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project management, and introduced the terms evolution and evolutionary to the process lexi-
con [Gil77]. In 1978, Yau proposed the change mini-cycle model [YCM78], which introduced
evolutionary elements in software development process models.

In 1979, Feldman developed the program Make, making an important contribution to SCMs.

2.1.2 The Eighties

During the eighties there were three important events: The creation of software evolution as a
discipline, the criticisms about the waterfall model and the introduction of evolutionary process
models.

In 1980, Manny Lehman in his seminal work [Leh80a; Leh80b] introduced the laws of soft-
ware evolution. The formulated empirical laws were based on a study to understand the change
process being applied to IBM’s OS 360 operating system. Lehman confirmed the software evo-
lution laws on other software systems in 1985 [LB85]. Lehman was the first to use the term
Software Evolution to emphasize the difference with the post-deployment activity of software
maintenance. Moreover, he was the first to observe that software must change to adapt to a
changing world. Lehman coined the term E-type software to stress the difference between soft-
ware that changes to adapt to the real world—maintaining its usefulness—and software that
does not change, and therefore dies because it is not used in the real world. However, it took
until the end of the eighties for the term software evolution to be widely accepted [Art88; OL90].

Concerning process models, in this decade researchers proposed two important evolutionary
models: Gilb’s evolutionary development in 1981 [Gil81] and Boehm’s spiral model in 1988
[Boe88]. These models were introduced in the context of a growing criticism to the waterfall
model. In 1982, McCracken and Jackson argued against the waterfall model [MJ82] and in
1986 Parnas and Clements stated that, while they believe in the ideal of the waterfall model,
they found it impractical [PC86]. Nine years later, in 1995, Brooks marked the end of the
waterfall model with his keynote at ICSE titled “The waterfall model is wrong!”.

In the meantime, SCM systems continued their growth. In 1982, Tichy introduced Revision
Control System (RCS) [Tic82], while four years later Concurrent Version System (CVS), a very
popular versioning system (still used in a large number of open source projects and industrial
settings) emerged.

2.1.3 From the Nineties to Mining Software Repositories

In the nineties, especially the second half, public awareness of evolutionary development was
significantly accelerated. Moreover, it was in the nineties that SCM received widespread atten-
tion and usage. With the advent of the Internet and the improvement in network bandwidth,
software development started to be distributed, source code repositories started to be remote
and CVS played a key role in this transition, as it supports concurrent development. In the
nineties, the first bug tracking systems were created: GNATS being the first in 1992, followed by
Debbugs in 1994, Bugzilla in 1998, a service offered by SourceForge in 1999 and many others
after 2000 (including the Google Code issue tracker in 2007).

In 1995, many contributors from the Rational Corporation created the Rational Unified Pro-
cess, in which daily build and smoke tests were promoted, a influential practice institutionalized
by Microsoft [McC95]. In 2000, Bennet and Rajlich proposed the software development staged
model [BR00].
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The origin of agile methods and processes took place around the year 2000. In 1996, Kent
Beck joined the Chrysler C3 payroll project and in this context extreme programming practices
(emphasis on communication, simplicity, testing) matured. It was after this experience that Kent
Beck wrote the famous book “Extreme Programming Explained: Embrace Change” [Bec99]. In
1999, another two agile methods were proposed: Stapleton introduced the Dynamic Systems
Development Method (DSDM) [Sta99], and De Luca created the Feature Driven Development
method (FDD) which was first presented by Coed et al. in the book “Java Modeling in Color with
UML” [CLL99]. One year later, Beedle introduced Scrum [BDS+00], an agile method destined
to become famous. In February 2001, 17 process experts from DSDM, XP, Scrum, FDD and
others created the Agile Alliance and coined the term “Agile methods”. Later in 2001, one of
the participant, Cockburn, published the book “Agile Software Development” [Coc01], while in
2002, Martin wrote about agile software development in a dedicated book [Mar02].

Concerning SCM, two important steps in their growth were the creation of Subversion (SVN)
in 2000 (the successor of CVS) and the release of Git in 2006 (an open source distributed version
control system). In the second half of the nineties, SCMs became so used and popular that
researchers started to mine source code repositories. The first approaches were proposed by Ball
et al. in 1997 to find clusters of files frequently changed together [BAHS97], by Graves et al. in
1998 to compute the effort necessary for developers to make changes [GM98] and by Atkins et
al. in 1999 to evaluate the impact of tools on software quality [ABGM99]. These are among the
seminal research works where the field of mining software repositories has its roots.

2.1.4 The Advent of Mining Software Repositories

In the first half of the current decade, software repositories received more and more attention
by researchers and practitioners. The usage of SCM systems became fundamental for software
development. Estublier et al. stated that “[...] modern SCM systems are now unanimously
considered to be essential to the success of any software development project [...] Furthermore,
there is a lively international research community working on SCM, and a billion dollar commer-
cial industry has developed” [ELH+05]. A number of new bug tracking systems were created
(MantisBT, FogBugz, Jira, Savannah, FlySpray, Assembla, etc.) and their usage started to become
established practice in software development.

In the meantime, software evolution started to be an active and well-respected research field
in software engineering, and mining software repositories matured and started to be a research
area on its own. In 2004, the first International Workshop on Mining Software Repositories
(MSR) was held [HHM04]. In the following years, the topic gained increasing attention and the
field continued to mature: Many software engineering and software maintenance conferences
had sessions about mining and the international workshop on MSR became a working conference
in 2008 [HLG08].

Mining software repositories is not only about source code, SCM and defect tracking systems.
In this broad field, researchers mine and analyze a variety of different repositories. To have an
impression of the approaches under the umbrella of MSR, we show in Figure 2.1 a word cloud
obtained with all the titles and abstracts of the articles presented at the Working Conference
on Mining Software Repositories 2008, 2009 and 2010.1 Figure 2.1 shows that among the
most mentioned concepts in MSR are the following: source code, changes, bugs/defects and
developers. We model these concepts in our meta-model presented in Chapter 3.

1We choose the editions 2008, 2009 and 2010 of MSR, because since then it became a conference.
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Figure 2.1. A word cloud obtained from the abstracts of the 2008, 2009 and 2010 editions of
the Mining Software Repositories conference

To see which data is analyzed in MSR approaches and to achieve which goals, we present a
summary of all approaches presented at MSR 2008, 2009 and 2010 in Table 2.1. We observe
that MSR approaches focus on SCM meta-data, source code and defects, which are also the data
sources that we consider in our meta-model, presented in the following chapter.

2.1.5 Problems of Software Development Tools for MSR

With the increasing importance of software repositories, researchers observed that software de-
velopment tools (e.g., SCM, bug tracking systems, integrated development environment, etc.)
were not designed to support software evolution analysis and mining. In fact, as we discussed
in our historical overview, the advent of MSR was a consequence of the widespread adoption of
tools such as SCMs and defect tracking systems, which were created before researchers started
to mine software repositories.

Robbes and Lanza argued that existing SCMs, such as CVS, SVN and SourceSafe, are not
adequate for software evolution analysis for several reasons [RL05]: They are file-based instead
of entity-based (classes, methods, attributes in object-oriented languages) and thus operations
like renaming and refactorings have to be reconstructed with heuristics [GW05; VRRD06]; they
record changes only at commit time, and thus important pieces of information are lost [KM06].

Researchers also analyzed the efficiency of bug tracking systems in providing useful and rele-
vant information that developers can use to understand and fix the reported bugs [BJS+08]. The
studies showed that bug tracking systems used in large projects (e.g., Bugzilla used in Eclipse and
Mozilla) do not provide good support to describe bugs in a useful way, and therefore researchers
proposed methodologies to improve bug tracking systems [JPZ08; ZPSB09; BPSZ10].

Another problem of software development tools for MSR concerns their integration. In sev-
eral projects, both an SCM and a bug tracking system are used, but they are not integrated, i.e.,
it is not possible to link software defects with the code they affect. In some cases (e.g., in several
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Table 2.1. A summary of the approaches presented at MSR 2008, 2009 and 2010, classified
according to the data they analyzed and the goals they achieved

Analyzed data (it can be more than one per approach)
Versioning system meta data 27
Source code 26
Bug data 17
Email archives 6
Documentation 5
Data recorded in integrated development environments 4
System log files and stack traces 2
Build configuration data 1
Bytecode 1
Effort data 1
Unit tests 1
Work descriptions 1

Achieved goal (one per approach)
Improving development tools: 13

- Code search tools 4
- Integrated development environments 4
- Recommender system 2
- SCM 2
- Bug tracking system 1

Analyzing developers practices to improve them or to detect erroneous behavior 8
Studying and discovering general principles 8
Creating a common dataset / infrastructure to analyze software repositories 6
Analyzing the impact of source code and SCM properties on bugs 5
Defect prediction 5
Analyzing change properties from SCM 3
Challenges of mining new repositories 3
Extracting and analyzing developer expertises 3
Analyzing log files and stack traces to support debugging 2
Automating bug report classification 2
Analyzing the evolution of the build system 1
Analyzing the replicability of approaches 1
Bug detection 1
Creating social networks of developers 1
Extract structural information from email archives 1
Generating documentation 1
License identification 1
Presenting large amounts of MSR data effectively 1

Apache projects such as Derby, Lucene, Jackrabbit, Maven, Mina, etc.) there is a convention to
write the id of the bug that was fixed as a comment when committing the changes (i.e., the fix).
However, with such a convention, the links between bugs and code are not enforced by tools and
their quality and reliability depends on the diligence of developers. To ameliorate this situation,
researchers proposed two types of approaches: “during development” and “after development”.
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“During development” approaches enhance integrated development environments (IDE) by
linking data from multiple repositories and showing relevant artifacts only to the user. One
of these approaches is Jazz for Eclipse [Fro07]: It provides an integrated environment with a
strong emphasis on collaboration between developers. Jazz integrates source code with defects,
defects with failed unit tests, source code with builds and builds with defects. Another integrated
solution for Eclipse is Mylyn, a plugin created by Kersten and Murphy [KM05; KM06]. Mylyn
models tasks2 as first class entities and link them with the source code. It provides plugins to
integrate Bugzilla, Trac and Jira repositories, allowing the user to retrieve and store tasks (e.g.,
bugs to fix) in these repositories.

“After development” approaches integrate evolutionary repositories (such as SCM reposito-
ries and bug databases) by analyzing the data they contain. The first approach to link software
artifacts with bug reports was the Release History Database (RHDB) [FPG03], followed by oth-
ers such as Kenyon [BEJWKG05], Hipikat [uMSB05] and softChange [GHJ04]. Since these
approaches are closely related to ours, we discuss them in detail in Section 2.2.

2.1.6 Summing Up and Contextualizing our Approach

Figure 2.2 shows an overview of how software evolution, MSR, SCMs and bug tracking systems
evolved over the last 40 years. The concept of software evolution was first introduced in 1980,
and from then on problems concerning software evolution continued to challenge researchers.
The progresses of software evolution were influenced not only by development process models,
but also by tools used by developers on a daily basis, such as SCMs and IDEs. In recent times,
software evolution became an active research field, and researchers started to mine software
repositories to support software evolution analysis.
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Figure 2.2. An overview of the history of software evolution and MSR

However, there is still a gap between the information produced during software development
and the information needed for mining software repositories. One of the problems is the lack of
integration between the various pieces of information produced during software development,
such as SCM meta-data, source code, problem reports, etc. To tackle this problem, researchers
proposed two types of approaches: “During development”, i.e., IDE enhancements/plugins, such
as Jazz or Mylyn, and “After development”, i.e., integration for retrospective analysis. Even if
we believe that the better and long term solution consists in IDE enhancements, the de facto
standard is that in many software projects these solutions are not adopted and the only possibility
is to apply “after development” approaches.

2A task can be a variety of activities, among which a bug to fix or a feature to implement.
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Our thesis work is located in this context, and can be classified as an “after development”
integration approach. Our goal is to show that integrating and analyzing different aspects of
source code and defects evolution supports software maintenance activities, aimed at inferring
causes of problems and predicting the future of software systems. Figure 2.3 shows the roadmap
of our dissertation, where we superimpose the areas of related work, representing them as semi-
transparent shapes. Some parts of our thesis are related to more than one research area: In
these cases, we place them in the intersection of two shapes.

Supporting software maintenance
Inferring causes of problems Predicting the future

Modeling Software Evolution

Analysis of source code 
and defects co-evolution

Extensible meta-model for 
code and defect evolution

Integrated framework to 
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analysis
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Design flaw detection and analysis

Figure 2.3. Related work in the context of our thesis roadmap

The research areas most related to our thesis work are:

• Modeling software evolution. In the first part of our thesis work we create a meta-model
of software evolution and we implement it in the context of a software evolution analysis
framework. This part of the thesis is related to other approaches to model software evolu-
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tion and to create general frameworks for software evolution analysis and mining software
repositories.

• Software evolution visualization. We devise different software visualization techniques to
support the analysis of code, defects and their co-evolution. Related work in this case
are visualization approaches that have been proposed as a means to analyze software
evolution.

• Change coupling analysis. On top of our software evolution meta-model we built a number
of analysis techniques. Two of them focus on change coupling information and are related
to other approaches aimed at analyzing this type of data.

• Defect prediction and analysis. A number of techniques revolve around software defects
with different goals: Understanding their properties and their relationship with source
code, and predicting density and location of future bugs. We propose several techniques
to predict defects and one visual approach to study their evolution.

• Design flaw detection and analysis. We exploit our evolutionary meta-model to study the
relationship between the quality of the source code and the presence of software defects.
We focus our investigation on a certain aspect of code quality, namely the presence of
design flaws. Researchers largely studied software quality in general, and design flaws
in particular, and proposed several approaches to detect, characterize and analyze design
flaws.

In the following we detail the state of the art in the research areas listed above.

2.2 Modeling Software Evolution

Researchers proposed a number of approaches to model the evolution of software, summarized
in Table 2.2. As shown in the table, these approaches vary on:

• The data sources considered. Some approaches model the source code, others consider also
other pieces of data such as bug reports, e-mails, etc.

• The granularity of the evolution. An SCM repository contains two types of information that
can be extracted: Versions (or snapshot) of the software system, i.e., the source code of the
system at a particular version, and the SCM meta-data, i.e., the history of every versioned
file including the time, author and comment of each commit. Several software evolution
approaches model the SCM meta-data without considering snapshots; other approaches
model the system’s evolution as a collection of snapshots; others combine one or multiple
snapshots with SCM meta-data.

• The purpose. While every software evolution analysis tool implements a model of software
evolution, only few approaches provide a meta-model as a basis to devise analysis tech-
niques on top. In other words, approaches for modeling software evolution vary on how
many techniques were proposed on top of them.
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Table 2.2. Approaches modeling software evolution

Modeled data
Approach SCM Snapshots Bug Others

CVSgrab & CVSscan Yes In [VTvW05] In [VT06a] None
Deep Intellisense Yes One Yes E-mail
EvoOnt Yes Yes Yes None
Hipikat Yes No Yes E-mail, documentation
Hismo Yes Yes No None
Kenyon Yes Yes No None
RHDB Yes In [PGFL05; FG06] Yes None
SoftChange Yes No Yes E-mail
Tesseract Yes No Yes E-mail

Approach Techniques on top
CVSgrab & CVSscan None
Deep Intellisense None
EvoOnt iSPARQL [KBT07]
Hipikat None
Hismo Yesterday’s Weather [GDL04], Ownership Map [GKSD05], Class

hierarchies evolution visualization [GLD05]
Kenyon YARN [HJK+07]
RHDB Features visualization [FG04], RelVis [PGFL05], EvoGraph [FG06]
SoftChange None
Tesseract None

Hismo

In his PhD thesis [G0̂5] Gîrba defined Hismo, a meta-model of software evolution in which
history is an explicit entity [GD06]. The main idea of Hismo is to add a time layer on top of
every software entity, such as classes, methods and attributes. Like this, software entities have
histories composed of all their versions.

Hismo is a generic meta-model, which can describe the history of any entity. In his PhD work
[G0̂5] Gîrba used it to model the evolution of source code and CVS log files. To model source
code evolution he added the Hismo layer on top of the FAMIX meta-model [DTD01]; to model
CVS logs he created a Hismo compliant meta-model of versioning system meta-data.

Gîrba validated the Hismo meta-model—and its implementation in the context of the Moose
reengineering environment [DGN05]—by implementing a number of software evolution analy-
ses on top of it. Gîrba et al. presented “Yesterday’s Weather” [GDL04], an approach that uses
history measurements to detect candidates for reverse engineering activities. The approach is
based on the following idea: Entities that suffered important changes in the recent past are
likely to change in the near future. Another approach built on top of Hismo is the Ownership
Map [GKSD05], a visualization that depicts the code ownerships of all files in a CVS repository
over time. The visualization is implemented in a tool called Chronia built on top of Moose.
Gîrba et al. enriched Lanza’s polymetric views [LD03] by adding a time layer on top of them
[GLD05], as Hismo is adding a time layer on top of FAMIX. In particular, the authors devised a
visualization of the evolution of class hierarchies and, based on the analysis of two large open
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source systems, classified class hierarchies based on their history.
Hismo is flexible and can be adapted to model different types of data, as for example source

code and CVS log files. However, Hismo does not integrate source code with versioning system
meta-data in a unique meta-model, but to describe them Hismo is instantiated in two distinct
meta-models. Moreover, the approach does not model software defects.

Release History Database

The Release History Database (RHDB) [FPG03] was the first approach to link versioning system
files (from a CVS repository) with bug reports (from a Bugzilla database). The Release History
meta-model describes SCM artifacts, problem reports and program features. Fischer and Gall
proposed a technique on top of RHDB: The authors used multidimensional scaling to visualize
the evolution of features, with the aim of uncovering hidden dependencies between software
features [FG04].

Although the original Release History meta-model did not include information about the
source code, a number of techniques applied on top of RHDB added this information. Antoniol
et al. conducted a study on how to integrate the meta-model with a source code meta-model
(FAMIX) [APGP05]. Pinzger et al. integrated source code data with change coupling information
computed from the RDHB [PGF05]. They proposed RelVis, a visualization technique based on
Kiviat diagrams, to provide integrated views on source code metrics across different releases
together with change coupling information [PGFL05]. The EvoGraph visualization approach
[FG06] combines release history data and source code changes to assess structural stability and
recurring modifications.

EvoOnt

EvoOnt [KBT07] is a set of software ontologies and data exchange format based on the Web
Ontology Language OWL3. EvoOnt is composed of three distinct but interconnected ontology
models: (1) the software ontology, describing source code snapshots based on the FAMIX meta-
model; (2) the version ontology, modeling SCM meta-data; (3) the bug ontology, describing
problem reports according to the Bugzilla meta-model. Since OWL describes the semantics of the
data—rather than its structure— EvoOnt can be extended while maintaining the functionalities
of existing tools built on top of it.

To complement EvoOnt, Kiefer et al. developed iSPARQL [KBT07], a query engine that ex-
tends the Semantic Web query language SPARQL4 with facilities to query for similar software
entities (e.g., classes, methods, attributes) in OWL software repositories. The authors showed
that iSPARQL, together with EvoOnt, can be used to perform a number of tasks sought in soft-
ware repository mining projects, such as code evolution visualization and code smells detection.

Kenyon

Bevan et al. proposed the Kenyon framework [BEJWKG05], which provides an extensible infras-
tructure to retrieve the history of a software project from an SCM repository or a set of releases,
and to process the retrieved information. It also provides a common interface based on object-
relational persistence to access the processed data and to perform software evolution analysis.

3http://www.w3.org/TR/owl-ref/
4http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-sparql-query/
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Kenyon retrieves information from a number of SCM systems—CVS, SVN and ClearCase—and
it models multiple snapshots of a system. The authors designed the framework to be extensible,
so that other types of information can be added. In the implementation presented by Bevan et
al. [BEJWKG05], no other type of data (such as problem reports) was included in Kenyon.

One approach built on top of the framework is YARN [HJK+07]. YARN animates the evolu-
tion of a software system, based on source code changes, to support the understanding of the
system architecture.

CVSgrab & CVSscan

CVSgrab [VT06c; VT06b], proposed by Telea and Voinea, is a visualization tool to analyze CVS
based software repositories. The tool allows the user to produce views, to interact with them, to
do querying and filtering and to customize the visualizations through a set of metrics computed
from the CVS data. While the first version of CVSgrab included only SCM related information,
in a subsequent work the authors extended it to model also bug related information [VT06a].

The same authors presented another tool, called CVSscan [VTvW05], that samples multiple
versions of a software system from a CVS repository, and visualizes the evolution of lines of code.
The authors describe the entire toolset they developed [VT07], which models and visualizes
information from SCM meta-data, source code and problem reports. To our knowledge, no
analysis technique was built on top of this toolset.

Hipikat and SoftChange

C̆ubranić et al. introduced Hipikat [uMSB05], an approach for linking information from several
data sources to form a so called “implicit group memory” (group of developers). The authors
showed that such a group memory facilitates the insertion of newcomers in the group, by rec-
ommending relevant artifacts for specific tasks. The Hipikat meta-model combines information
from versioning systems, bug tracking systems, e-mail archives and documentation.

SoftChange [GHJ04] integrates data from SCM repositories, bug tracking systems and e-
mail archives. The data retrieved and processed by softChange is used for two types of software
evolution analysis: (1) Statistics of the overall evolution of the project, and (2) analysis of the
relationships among files and authors.

The meta-model of both Hipikat and SoftChange does not consider source code snapshots.
We are not aware of any approach proposed on top of Hipikat or SoftChange.

Tesseract and Deep Intellisense

Sarma et al. developed Tesseract [SMWH09], an interactive visualization tool that displays rela-
tionships between versioned files, developers, bugs and communications. The tool provides four
cross-linked displays which show: (1) the project activity over time with respect to the num-
ber of commits and number of communications; (2) a graph of change coupling dependencies
among files, (3) a graph of communication dependencies among developers and (4) the defects
affecting the considered files. The meta-model implemented in the tool describes the following
pieces of information: SCM files and meta-data, problem reports including communications ex-
tracted from their comments, and e-mail data. Developers information is extracted from these
data sources (for example from SCM accounts, people sending e-mails or assigned to fix bugs,
etc.). Tesseract’s meta-model does not describe source code snapshots.
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Deep Intellisense [HB08] is a Microsoft Visual Studio plugin that displays information ex-
tracted from various software related repositories to help developers understanding the rational
behind the code, i.e., why the code look like it does. Deep Intellisense integrates the following
data source: (1) Source code, (2) SCM repositories, (3) bug report, feature request and work
item (stored in the same database at Microsoft) and (4) mailing list archives. Both Tesseract and
Deep Intellisense are stand-alone tools, and no approach was built on top of them.

2.2.1 Summing Up

In recent years, researchers modeled software evolution in different ways. As discussed in Sec-
tion 2.1.5, in our thesis we focus on a specific problem of software development tools for MSR,
i.e., the lack of integration of software repositories. For this reason, we surveyed software evo-
lution models that integrate different data sources and serve as a basis for subsequent analyses.

RHDB and EvoOnt are the only approaches that model source code snapshots, SCM meta-
data and software defects. The models, however, were not extended beyond this, for example
to model e-mail data or documentation. Only Hismo, Kenyon, RHDB, and EvoOnt were used
to build analysis techniques on top, and still the number of techniques is limited. Although
some of the surveyed software evolution approaches are flexible, only Hismo and RHDB were
adapted/extended to model new pieces of information. In none of the presented approaches,
software defects are modeled as first class entities that evolve over time.

2.3 Software Evolution Visualization

Software evolution visualization is software visualization applied to evolutionary information.
Software visualization in turn is a specialization of information visualization focusing on soft-
ware [Lan03].

2.3.1 Software Visualization

According to Stasko et al. software visualization is “the use of the crafts of typography, graphic
design, animation, and cinematography with modern human-computer interaction and computer
graphics technology to facilitate both the human understanding and effective use of computer soft-
ware” [SDBE98].

The goal of software visualization is to support the understanding of large amounts of data,
when the question that one wants to answer about the data cannot be expressed as queries.
According to Butler et al. [BAB+93] there are three categories of visualization:

1. Descriptive visualization. The visualized subject is known to a master user and the visual-
ization is used to present the data to other people. Descriptive visualization is widely used
for educational purposes.

2. Analytical visualization. Defined as the process of looking for something known in the
available data. Visualization is particularly useful because it provides the context: For
example when visualizing a class hierarchy, the hierarchy is the context for a given class.

3. Explorative visualization. Defined as the process of interpreting the nature of the available
data. The user does not know (yet) what he is looking for, so he tries to discover recurring
patterns or to spot outliers.
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Software visualization approaches vary with respect to two dimensions: The type of visu-
alized data and the level of abstraction. According to the type of data, visualizations can be
classified as:5

• Static visualizations present information extracted by static analysis of the software. Their
goal is to support the understanding of the structure of the system.

• Dynamic visualizations render information that is derived from instrumenting the execu-
tion of a program. Their goal is to support the understanding of the behavior of the system.

• Evolutionary visualizations present information extracted from the evolution of a software
system such as SCM meta-data, differences between system snapshots, etc. Their goal is
to support the analysis of the causes of problems in the software and the prediction of
future changes or problems. All the visualization techniques built on top of our software
evolution approach lie in this category.

Since our focus is on evolutionary visualizations, we present them in details, while for static
and dynamic visualizations we provide a non comprehensive overview.

Static and dynamic visualizations

Based on their abstraction level, we distinguish three main classes of software visualization
approaches: Code-level, design-level and architectural-level.

Code-level visualization. Line-based software visualization was addressed in a number of ap-
proaches. In 1992, Eick et al. proposed SeeSoft [ESS92], the first tool that uses a direct code
line to pixel line visual mapping to represent files in a software system. On top of this mapping,
SeeSoft superimposes other types of information such as which developer worked on a given
line of code or which code fragments correspond to a given modification request.

Marcus et al. extended the visualization techniques of SeeSoft by exploiting the third dimen-
sion in a tool called sv3D [MFM03]. In particular, sv3D uses the third dimension to pack the
line-based visualization more compactly.

Ducasse et al. worked at a finer granularity level, using a character to pixel representa-
tion of methods in object-oriented systems. The authors enriched this mapping with semantic
information to provide overviews of the methods in a system [DLR05].

The Tarantula tool [JHS02] maps colors on program statements to show their participation
to a test suite and the corresponding outcome (passed or failed). Based on this visual mapping,
a user can identify statements involved in failures, and locate potentially faulty statements.

Design-level visualization. The next level of abstraction, after code, is the design level, where
visualizations focus on self contained pieces of code, such as classes in object-oriented systems.

UML diagrams are the industry standard for representing object-oriented design. A number
of tools, such as Rational Rose, ArgoUML, Enterprise Architect,6 provide the generation of UML
diagrams from code.

5This classification is inspired by the taxonomy of software visualization tools presented by Price et al. [PBS93].
This taxonomy classifies software visualization tools in three main classes: (1) Algorithm animation, (2) dynamic vi-
sualization and (3) static visualization. We adapted this taxonomy by removing algorithm animation and by adding
evolutionary visualization, since Price et al. proposed the taxonomy in 1993, before software evolution visualization
approaches were proposed.

6Available respectively at:
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Researchers investigated techniques to enrich and extend standard UML diagrams. Termeer
et al. developed the MetricView tool which augments UML class diagrams with visual repre-
sentation of class metrics extracted from the source code [TLTC05]. Knodel et al. proposed a
tool called SAVE [KMNL06] that uses UML-like figures to represent architectural components,
allowing the user to navigate from the components to the code. Through a user study, the au-
thors showed that the visualization and the navigation capabilities offered by SAVE support the
comprehension of relationships between source code and architectural models [KMN08].

Researchers also investigated different visualization techniques to represent source code at
the design level. In his PhD thesis work Lanza introduced polymetric views [Lan03], a lightweight
software visualization technique. A polymetric view is a representation of software entities and
software relationships enriched with software metrics: For example, in the System Complexity
view [LD03] rectangles represent classes and edges connecting rectangles represent inheritance
relationships. The height, width and fill color intensity of class rectangles are proportional
respectively to number of methods, attributes and lines of code that the corresponding class has.

Polymetric views can be enriched with dynamic or semantical information. Greevy et al. ex-
ploited a 3D visualization to add execution trace information to polymetric views in a tool called
TraceCrawler [GLW06]. The tool is a 3D extension of CodeCrawler [LDGP05], the tool where
Lanza originally implemented polymetric views. Ducasse and Lanza enriched polymetric views
with information extracted from control flow analysis in a visualization called class blueprint
[DL05]. The class blueprint renders classes and, inside them, attributes, methods and call flow
information. The catalog of polymetric views presented in Lanza’s PhD thesis in not limited to
design level visualizations, but includes also architectural level visualizations.

Polymetric views are not the only visualization technique to combine static and dynamic in-
formation about a software system. Cornelissen et al. proposed a trace visualization method
[CZH+08] based on a massive sequence and circular bundle view [Hol06], implemented in a
tool called ExtraVis. ExtraVis shows the system’s structural decomposition (e.g., in terms of
package structure) and renders traces on top of it as bundled splines, enabling the user to inter-
actively explore and analyze program execution traces. Cornelissen et al. showed that ExtraVis
supports three program comprehension tasks: trace exploration, feature location, and feature
comprehension. Later, Cornelissen et al. conducted a controlled experiment on the usage of
ExtraVis to perform eight program comprehension tasks, showing that the group using ExtraVis
was faster and produced better results than the group using Eclipse [CZVRvD09].

Ducasse et al. proposed a generic visualization technique, called Distribution map [DGK06],
to analyze how properties are distributed in a software system. The Distribution Map is based
on the notion of focus (whether a property is well-encapsulated or cross-cutting) and spread
(whether the property exists in several parts of the system). Given its generality, the Distribution
Map technique can be applied in several types of analysis: Ducasse et al. applied it to study
the distribution of linguistic concepts in software systems and to analyze the distribution of
ownership among files.

Another direction of research is the use of metaphors to represent software. Wettel and Lanza
argue that a city is an appropriate metaphor for the visual representation of software systems
[WL07a] and implement it in their CodeCity tool [WL08a], where buildings represent classes

• Rational Rose http://www-01.ibm.com/software/awdtools/developer/rose/

• ArgoUML http://argouml.tigris.org

• Enterprise Architect http://www.sparxsystems.com/

http://www-01.ibm.com/software/awdtools/developer/rose/
http://argouml.tigris.org
http://www.sparxsystems.com/
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and districts represent packages. Kuhn et al. used a cartography metaphor to represent software
systems [KLN08]. In their Software Cartographer tool, the authors use a consistent layout for
software maps in which the position of a software artifact reflects its vocabulary, and distance
corresponds to similarity of vocabulary.

Architectural-level visualization. The highest level of abstraction is the architecture level, con-
sisting of system’s modules and relationships among them.

In 1988, Müller and Klashinsky introduced Rigi [MK88], the first architectural visualization
tool. Rigi is a programmable reverse engineering environment that provides interactive visu-
alizations of hierarchical typed graphs and a Tcl interpreter for manipulating the graph data.
The tool offers various capabilities for collapsing, expanding and filtering the nodes, navigat-
ing the hierarchical models and making layouts. Rigi has been a very successful tool [KM10]:
Other architecture visualization tools were built on top of it [KC98; OS01] and it inspired other
architectural visualization projects. Two of them were Shrimp [SM95] and its Eclipse-based
continuation Creole [LMSW03]. These tools display architectural diagrams using nested graphs
where graph nodes embed source code fragments. Creole and shrimp provide animated panning,
zooming, and fisheye-view actions to let the user interact with the visualizations.

Lungu et al. introduced Softwarenaut [LL06], an architectural visualization and exploration
platform on top of which they experienced with automatic exploration mechanisms [LLG06]. In
a subsequent work, the authors extended Softwarenaut to analyze the evolution of the relation-
ships between a system’s modules [LL07].

Ducasse et al. proposed the Package surface blueprint [DPS+07], a visualization approach to
study the relationships among the packages of a system. The visualization shows how a package
under analysis references other packages, by rendering with different colors class references and
inheritance relationships.

2.3.2 Evolutionary Visualization

Researchers employed visualization in software evolution analysis to break down the data quan-
tity and complexity. Table 2.3 presents a summary of evolutionary visualizations classified ac-
cording not only to the abstraction level—as all software visualization approaches—but also to
the visualized evolutionary data. With respect to this second dimension, we distinguish three
main classes of evolutionary visualizations: (1) Approaches that extract and visualize informa-
tion from multiple evolutionary snapshots of a software system, (2) techniques that visualize
historical information about software systems as extracted from SCM log files, and (3) visual-
izations of data retrieved from various repositories such as SCM repositories, problem report
databases and e-mail archives.

Approaches based on multiple evolutionary snapshots

Many approaches consider different releases of a software system (evolutionary snapshots) and
visualize their history and their differences at various abstraction levels.

Telea et al. proposed a code level visualization technique called Code Flows, which displays
the evolution of source code over several versions [TA08]. The visualization, based on a code
matching technique that detects correspondences in consecutive ASTs [CAT07], is useful to both
follow unchanged code and detect important events such as code drift, splits, merges, insertions
and deletions.
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Table 2.3. Software evolution visualization approaches classified according to the abstraction
level and the visualized data sources

Visualized data
Abstraction level Multiple evo. snapshots SCM log files Integrated data sources
Code [TA08] [BE96] [FD04; VTvW05]
Design [GLD05; Lan01; TG02] [TM02; VRD04; WHH04;

GKSD05]
[FG06; CKN+03; VT06c;
SMWH09; HB08]

Architectural [GJR99; Jaz02] [GHJ98; GJK03] [PGFL05; HJK+07]

Several approaches were proposed at a higher level of abstraction: the design level. Gîrba
et al. visualized the evolution of class hierarchies and classified them based on their history
[GLD05]. Lanza’s Evolution Matrix [Lan01] visualizes the system’s history in a matrix where
each row represents the history of a class, and each column an evolutionary snapshot of the
system. A cell in the Evolution Matrix represents a version of a class, where its dimensions are
mapped to evolutionary measurements computed on subsequent versions. Tu and Godfrey pro-
posed an approach that integrates the use of metrics, software visualization and origin analysis
for studying software evolution [TG02].

Jazayeri et al. used a three-dimensional visual representation at the architectural level for
analyzing a software system’s release history [GJR99]. Later, Jazayeri proposed a retrospective
analysis technique to evaluate architectural stability, based on the use of colors to depict changes
in different releases [Jaz02].

Approaches based on SCM logs

Another approach to software evolution visualization consists in retrieving the history of a soft-
ware system from SCM log files.

Working at the level of code, Ball and Eick focused on the visualization of different source
code evolution statistics such as code version history, difference between releases, static proper-
ties of code, code profiling and execution hot spots, and program slices [BE96].

A number of evolutionary visualizations were proposed at the design level, i.e., rendering
SCM files, and able to scale to visualize the entire system. Taylor and Munro used visualization
together with animation to study the evolution of a CVS repository [TM02]. The technique,
called revision towers, allows one to find out where the active areas of the project are and how
work is shared out across the project. Rysselberghe and Demeyer used a scatterplot visualization
of CVS data [VRD04] to recognize relevant changes in a software system such as: (1) unstable
components, (2) coherent entities, (3) design and architectural evolution, and (4) fluctuations
in team productivity. Wu et al. used a spectograph metaphor to visualize how changes occur
in software systems [WHH04]. The Ownership Map [GKSD05], introduced by Girba et al.,
visualizes code ownership of files over time, based on information extracted from CVS logs.

Gall et al. used a graph based representation to visualize historical relationships among sys-
tem’s modules extracted from the release history of a system [GHJ98]. The authors applied the
visualization to analyze historical relationships among modules of a large telecommunications
system and showed that it supported the understanding of the system architecture. Later Gall
et al. revisited the technique to work at the design level, visualizing classes and historical de-
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pendencies among them [GJK03]. They validated the approach on the history of an industrial
system, demonstrating that their visualization can be used to detect architectural weaknesses.

Approaches based on integrated data sources

A number of approaches use information from both different releases of a software system and
SCM log files.

Augur [FD04] is a code level visualization tool that combines, within one visual frame, infor-
mation about both software artifacts and the activities of a software project at a given moment
(extracted from SCM logs). Although Augur works at the code level, i.e., it visualizes individual
code lines, it scales to the design level showing information about multiple files in a single view.
Another tool working at the code level is CVSscan [VTvW05] which samples multiple versions
of a software system from a CVS repository, and visualizes the evolution of lines of code.

Other approaches target the design level: The EvoGraph visualization [FG06], presented by
Fischer and Gall, combines release history data and source code changes to assess structural
stability and recurring modifications. Collberg et al. proposed a graph drawing technique for
visualization of large graphs with temporal component, with the aim of understanding the evo-
lution of legacy software [CKN+03].

At a higher level of abstraction, the architectural level, Pinzger et al. [PGFL05] proposed a
visualization technique based on Kiviat diagrams. The visualization provides integrated views
on source code metrics in different releases together with coupling information computed from
CVS log files. Hindle et al. developed the YARN tool [HJK+07], which animates the evolution
of the relationships among system’s components over time to support the understanding of the
system architecture. To generate the animations YARN extracts source code changes from an
SCM repository and maps them on software components.

Several evolutionary visualization approaches integrate source code data with information
extracted from bug repositories. CVSgrab supports querying, analysis and visualization of CVS
based software repositories, integrating also Bugzilla information [VT06c]. Voinea and Telea
applied CVSgrab to assess change propagation of buggy files in Mozilla [VT06a]. Two tools
that integrate information extracted not only from source code and bug repositories but also
from other data sources are Tesseract and Deep Intellisense. Tesseract provides interactive visu-
alizations of relationships between files, developers, bugs and e-mails [SMWH09], while Deep
Intellisense integrates source code, SCM repositories, bug reports, feature requests, work items
and mailing list archives [HB08]. All the mentioned tools, i.e., CVSgrab, Tesseract and Deep
Intellisense, provide visualizations at the design level.

2.3.3 Summing Up

We presented a survey of software visualization approaches pertinent to the research presented
in this dissertation. We classified the approaches according to the type of visualized data (static,
dynamic and evolutionary) and the abstraction level (code-, design- and architectural-level).

With this survey, we showed that visualization is an effective means to analyze and under-
stand large amounts of data, typical of software evolution studies, where researchers deal with
large and long-lived systems. For this reason, in our thesis work we use visualization to ana-
lyze the evolution of source code (cf. Chapter 4), software defects (cf. Chapter 5) and their
co-evolution (cf. Chapter 6).
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2.4 Change Coupling Analysis

Change (or logical) coupling is the implicit dependency between two or more software artifacts
that have been observed to frequently change together during the evolution of a system [GHJ98].
This co-change information can either be present in the versioning system, or must be inferred
by analysis. For example, Subversion marks co-changing files at commit time as belonging to the
same change set while in CVS the logically coupled files must be inferred from the modification
time of each file.

The concept of co-change in versioning system was first introduced by Ball and Eick [BAHS97].
They used this information to visualize a graph of co-changed classes and detect clusters of
classes that often changed together during the evolution of a system. The authors discovered
that classes belonging to the same cluster were semantically related.

Gall et al. revised the concept of co-change to detect implicit relationships between modules
[GHJ98], and named it change (or logical) coupling. They analyzed the dependencies between
modules of a large telecommunications system and showed that the concept helps to derive
useful insights on the system architecture. Later the same authors revisited the technique to
work at a lower abstraction level. They detected change couplings at the class level [GJK03]
and validated it on 28 releases of an industrial software system. The authors showed through
a case study that architectural weaknesses, such as poorly designed interfaces and inheritance
hierarchies, could be detected based on change coupling information.

Other work was performed at finer granularity levels. Zimmermann et al. [ZWDZ05] used
the co-change information to predict entities (classes, methods, fields, etc.) that are likely to be
modified when one is being modified. Ying et al. proposed an approach, based on data mining
techniques, to recommend potentially relevant source code artifacts to a developer performing
a modification task [YMNCC04]. The authors showed that the approach can reveal valuable
dependencies by applying it to the Eclipse and Mozilla open source projects. Breu and Zim-
mermann [BZ06] applied data mining techniques on co-changed entities to identify and rank
crosscutting concerns in software systems. Bouktif et al. [BGA06] improved precision and recall
of co-chancing files detection with respect to previous approaches. They introduced the concept
of change-patterns, in particular the “Synchrony” pattern for co-changing files, and proposed an
approach to detect such change-patterns in CVS repositories using dynamic time warping.

The analysis of change coupling has two major benefits:

1. It is more lightweight than structural analysis, as only the data provided by the SCM log
files is needed, i.e., it is not necessary to parse and model the whole system. Moreover, as
it works at the text level, it can be used to analyze systems written in multiple languages.

2. It can reveal hidden dependencies that are not present in the code or in the documentation.

Since in our dissertation we propose a visual approach to analyze change coupling informa-
tion, we review other visualization techniques.

2.4.1 Change Coupling Visualization

Ball et al. were the first to visualize information about change coupling [BAHS97]. They pro-
posed a static graph visualization technique where nodes represent classes and two classes are
connected with an edge if there is a modification report (a commit) in which both the classes
changed. The nodes are positioned according to the number of times the corresponding classes
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changed together, in such a way that coupled classes are close to each other. The color and shape
of a node represents the module the class belongs to.

Ratzinger et al. proposed a visualization technique to render the change coupling between
java classes, visualizing also module (package) information [RFG05]. Classes are rendered as
small ellipse and grouped in larger ellipses representing the packages they belong to. The visual-
ization shows the change coupling among classes through edges connecting the ellipses, whereas
the thickness of the edges describes the “strength” of the visualized couplings. The technique
does not scale on large systems, since visualizing coupling as edges suffers from over-plotting.7

Another change coupling visualization approach, already mentioned as architectural level
evolutionary visualization, was presented by Pinzger et al. [PGFL05] with Kiviat Diagrams.
They represent coupling relationships as edges between modules and use surfaces to depict
complete releases. Their work is not the first to represent the coupling as graphs. In fact, the
nodes and edges representation was used since the first publications related to change coupling
[GHJ98; GJK03]. The drawback of this representation is that it either represents only modules,
thus being very coarse-grained, or it represents modules and files, but then incurs scalability and
over-plotting problems.

Beyer and Hassan introduced the Evolution Storyboards [BH06]: A storyboard is a sequence
of animated panels that shows the files composing a CVS repository, with an energy based lay-
out, where the distance of two files is computed according to their change coupling, similarly to
the approach of Ball et al. [BAHS97]. The visualization allows the user to easily spot clusters of
related files and to compare this cluster with the system decomposition in module, by rendering
the module information on the color of the files (files belonging to the same module are ren-
dered with the same color). Each panel is computed according to a particular time period, and
the animation in the panel shows how the files move according to how their change coupling
changed over the considered time. The visualization is scalable and the authors were able to
apply it on large software systems. The Evolution Storyboard does not show the dependencies
between modules, but only among files.

2.4.2 Summing Up

From our survey on co-change analysis approaches we draw the following conclusions:

• Lack of integration. The main problem with existing techniques is that they work either at
the architecture level or at the file (or even lower) level. Working at the architecture level
provides high-level insights about the system’s structure, but low-level information about
finer-grained entities is lost, and it is difficult to say which specific artifacts are causing
the coupling. Working at the file level makes one lose the global view of the system, and
it becomes difficult to establish which higher-level consequences the coupling of a specific
file has.

To overcome this problem, in Chapter 4 we propose a visualization that integrates change
coupling information at a module-level (which modules are coupled with each other) and
at a file-level (which files are responsible for the change couplings).

• Impact on software defects. Change coupling was considered a bad symptom in a software
system: At a fine grained level because a developer who changes an entity might forget

7Over-plotting is the problem of multiple visual objects sharing the same space, and thus being positioned on top of
one another. This makes it difficult, or even impossible, to distinguish individual objects, threatening the analysis.
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to change related entities or, at the system level, because high coupling among modules
points to design issues such as architecture decay. Researchers studied change coupling
in order to address these two issues, using change recommendation systems and software
evolution analysis approaches.

However, no research so far was conducted to empirically assess whether change coupling
correlates with the presence of software defects, a tangible effect of design issues. We
perform such a study in Chapter 9.

2.5 Defect Prediction and Analysis

Predicting the location and density of software defects in a system was actively researched for
more than a decade, with more than a hundred published research papers [MK10]. In the
last years, top software engineering conferences (e.g., the International Conference on Software
Engineering) and journals (e.g., IEEE Transactions on Software Engineering) featured articles
and research tracks on defect prediction.

Defect analysis has recently received increased attention and researchers are especially active
developing bug triaging systems and improving bug data and bug tracking systems.

2.5.1 Defect Analysis

With the term defect analysis we indicate approaches where the focus is on defects, and not
approaches where defects are “only” a property of another entity being the focus of the analysis.
All the techniques that link problem reports with other software related artifacts—to study where
problems are in a system [FG04; PGFL05; FG06; VT06a] or to create a comprehensive model
of software evolution [uMSB05; GHJ04; SMWH09; HB08]—lie in the latter category, and we
already presented them when surveying approaches for modeling (cf. Section 2.2) or visualizing
(cf. Section 2.3) software evolution.

Bug triaging

Researchers exploited the knowledge stored in bug tracking systems to aid bug triaging. Anvik
et al. presented an approach to semi-automatically assign a developer to a newly received bug
report [AHM06]. They apply machine learning algorithms to recommend to a triager a set of
developers who may be appropriate for resolving a given bug. A similar approach was presented
by Čubranić and Murphy [uM04].

Jeong et al. observed that a relevant percentage of problem reports (between 37% and 44%
for Mozilla and Eclipse) are reassigned to other developers to get fixed, thus increasing the time
needed to fix the bug [JKZ09]. To improve the performances of bug triaging approaches the
authors proposed a graph model that describes the “reassignment” history of a problem report.
Jeong et al. empirically demonstrated—on a dataset of 445,000 problem reports—that their
graph model can reduce reassignment events by up to 72%, and improve prediction accuracy of
bug triaging approaches by up to 23%.

Weiss et al. presented an approach that allows early effort estimation, supporting the task
of assigning bugs to schedule stable releases of a software project [WPZZ07]. Given a new bug,
the technique predicts the person-hours needed to fix it by first looking for similar (using text
similarities techniques), earlier bugs in the bug database, and then by using their average fixing
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time as a prediction. The authors showed that, with a sufficient number of bugs, their prediction
is close (one hour of deviation only) to the actual fixing time.

Wang et al. focused on a specific task that the bug triager has to perform [WZX+08]: Given a
new problem report, deciding whether it is a duplicate of an existing one. The authors improved
existing techniques based on natural language, with execution information. They showed that
their improved approach can detect 67–93% of duplicate bugs, compared to 43–72% of previous
techniques based only on natural language information.

Bug quality

Researchers investigated the quality of bug reports. Bettenburg et al. analyzed the impact of
duplicate bugs for the developers in charge to fix them [BPZK08]. The authors found out that,
in contradiction to popular wisdom, bug duplicates are not considered as a serious problem for
open source projects, and in many cases the additional information provided by duplicates helps
to resolve bugs quicker. The authors also showed that this additional information can improve
automatic triaging. In a follow-up work [BJS+08], Bettenburg et al. conducted a survey among
developers and users of three large open source projects (e.g., Apache, Eclipse and Mozilla) to
find out what makes a good bug report. The analysis of the responses revealed an information
mismatch between what developers need and what users supply. To fill this gap, the authors
developed a prototype that measures the quality of new bug reports and recommends which
pieces of information should be added to improve the quality of the report.

Hooimeijer et al. introduced a model of bug report quality, based on a statistical analysis of
problem reports extracted from the Firefox bugzilla database [HW07]. Based on their model,
the authors showed that some problem report features are more important than others, and they
should be highlighted when creating new problem reports.

Antoniol et al. showed that a considerable fraction of problem reports marked as bugs in
Bugzilla (according to their severity) are indeed “non bugs”, i.e., problems not related to correc-
tive maintenance [AADP+08]. The authors presented a text-based classification technique that
distinguishes bugs from non bugs, and empirically validated it on Mozilla, Eclipse and JBoss,
obtaining a correct classification in approximately 80% of the cases.

Bug history

Few researchers so far analyzed the history of software bugs. Halverson et al. presented a num-
ber of visualizations [HEDK06] to support the coordination of work in software development,
namely the Work Item History and the Social Health Overview. The Work Item History shows
status changes of bug reports and makes problematic patterns such as resolve-reopened visible.
The Social Health Overview provides an interactive overview of bug reports with drill down ca-
pabilities. Bug reports are represented as circles, whereas different bug measures such as the
life-cycle-patterns or the bug’s heat can be mapped to the size and color circles.

Aranda and Venolia performed a study of coordination activities around bug fixing from three
major product divisions at Microsoft [AV09]. They first queried the bug database—containing
rich bug histories—to extract the people involved in the bug fixes, and then contacted and
interviewed them. The authors showed that social, organizational, and technical knowledge
highly influences the history of bugs, whereas the information stored in bug repository only is
not sufficient, and at times even misleading, to support developers coordination for bug fixing.
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Summing up

While researchers proposed a number of approaches for bug triaging and to improve bug quality,
only little effort was spent so far to model the evolution of bugs and to exploit the information
residing in their histories. Moreover, all the mentioned approaches, but the one of Halverson
et al. [HEDK06], tackle a specific task—such as detecting duplicated bugs—while no approach
was devised to support the understanding of a bug repository as a whole and the analysis of bug
evolution. We propose such an approach in Chapter 5.

2.5.2 Defect Prediction

Defect prediction approaches vary with respect to three dimensions: The data used for the
prediction, the kind of prediction and its granularity. According to the used data we distinguish
techniques based on SCM log files data, metrics extracted from the source code and other types
of data. The granularity of the prediction can be at either the file/class level, or module/package
level. For the kind of prediction, we differentiate between classification and raking techniques.

Classification techniques

The goal of classification techniques is to predict, for each software artifact, whether it will have
at least one defect reported. The outcome of a classification approach is a classification table
such as Table 2.4, called confusion matrix.

Table 2.4. Confusion matrix: The outcome of classification approaches

ObservationObservation

Buggy Non buggy

Prediction
Buggy True positive False positive

Prediction
Non buggy False negative True negative

To assess the performance of a classification model, typically used measures are:

• Precision. It is a measure of exactness defined as the ratio between the number of true
positives and the number of artifacts predicted as buggy (true positives plus false posi-
tives), where a value close to one means that every artifact predicted as buggy actually
had defects.

• Recall. It is a measure of completeness defined as the ratio between the number of true
positives and the number of artifacts that actually had defects (true positives plus false
negatives), where a value close to one means that every software artifact that had defects
was predicted as buggy.

• F-measure. It is a measure that combines precision and recall, defined as their harmonic
mean.
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• Accuracy: It is a measure of classification goodness defined as the ratio between the num-
ber of correct classifications (true positives plus true negatives) and the total number of
software artifacts, where a value close to one means that the model classified perfectly,
without doing miss-classification errors.

Ranking techniques

The goal of ranking techniques is to predict the order of software artifacts according to the
number of defects they have (a list where the artifacts with most defects come first). To assess
the quality of such a ranking, the typical measures are:

• The Pearson’s correlation coefficient, which measures the correlation between two variables,
assuming a linear relationship.

• The Spearman’s rank correlation coefficient, which measures the correlation between a pre-
dicted and observed ranking, and it is suitable for general associations [Tri06]. In a defect
prediction context, the Spearman’s correlation is preferable to the Pearson’s one, as it is
recommended with skewed data [Tri06] (with respect to a normal distribution), a typical
characteristic of bug prediction dataset, where most of the software artifacts are non-
buggy and only few ones are buggy. A Spearman’s correlation close to 1 or -1 indicates an
identical or opposite ranking, whereas a value close to 0 indicates no correlation.

SCM approaches

SCM approaches use information extracted from SCM log files, assuming that recently or fre-
quently changed files are the most probable source of future bugs.

Khoshgoftaar et al. classified modules as defect-prone based on the number of past modifica-
tions to the source files composing the module [KAG+96]. They showed that the number of lines
added or removed in the past is a good predictor for future defects at the module level. Graves et
al. devised an approach based on statistical models to find the best predictors for modules’ future
faults [GKMS00]. The authors found out that the best predictor is the sum of contributions to a
module in its history. Nagappan and Ball performed a study on the influence of code churn (i.e.,
the amount of change to the system) on the defect density in Windows Server 2003. They found
that relative code churn was a better predictor than absolute churn [NB05b]. Hassan introduced
the entropy of changes, a measure of the complexity of code changes [Has09]. The entropy was
compared to amount of changes and the amount of previous bugs, and it was found to be of-
ten better. The entropy metric was evaluated on six open-source systems: FreeBSD, NetBSD,
OpenBSD, KDE, KOffice, and PostgreSQL. Moser et al. proposed a classification technique based
on metrics (including code churn, past bugs and refactorings, number of authors, file size and
age, etc.), to predict the presence/absence of bugs in Eclipse’s files [MPS08].

The previous techniques do not make use of the defect archives to predict bugs, while the
following ones do. Hassan and Holt’s top ten list approach validates heuristics about the defect-
proneness of the most and most recently changed and bug-fixed files, using the defect repository
data [HH05]. The approach was validated on six open-source case studies: FreeBSD, NetBSD,
OpenBSD, KDE, KOffice, and PostgreSQL. They found that recently modified and fixed entities
were the most defect-prone. Ostrand et al. predict faults on two industrial systems, using change
and defect data [OWB05]. The bug cache approach by Kim et al. uses the same properties of
recent changes and defects as the top ten list approach, but further assumes that faults occur in
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bursts [KZWZ07]. The bug-introducing changes are identified from the SCM logs. Seven open-
source systems were used to validate the findings (Apache, PostgreSQL, Subversion, Mozilla,
JEdit, Columba, and Eclipse). Bernstein et al. use bug and change information in non-linear
prediction models [BEP07]. Six eclipse plugins were used to validate the approach.

Source code metrics approaches

Defect prediction approaches based on code metrics assume that the current design and behavior
of the program influences the presence of future defects. These approaches do not require the
history of the system, but analyze its current state in more detail, using a variety of metrics. One
standard set of metrics used is the Chidamber and Kemerer (CK) metrics suite [CK94].

Basili et al. used CK metrics on eight medium-sized information management systems based
on the same requirements [BBM96]. Ohlsson and Alberg used several graph metrics including
McCabe’s cyclomatic complexity on an Ericsson telecom system [OA96]. El Emam et al. used the
CK metrics in conjunction with Briand’s coupling metrics [BDW99] to predict faults on a com-
mercial Java system [EMM01]. Subramanyam and Krishnan used CK metrics on a commercial
C++/Java system [SK03]; Gyimothy et al. performed a similar analysis on Mozilla [GFS05].
Nagappan and Ball estimated the pre-release defect density of Windows Server 2003 with a
static analysis tool [NB05a]. Nagappan et al. used a catalog of source code metrics to predict
post-release defects at the module level on five Microsoft systems, and found that it was possible
to build predictors for one individual project, but that no predictor would perform well on all
the projects [NBZ06]. Zimmermann et al. applied a number of code metrics on Eclipse [ZPZ07].

Other approaches

Ostrand et al. conducted a series of studies on the whole history of different systems to analyze
how the characteristics of source code files can predict defects [OW02; OWB04; OWB07]. On
this basis, they proposed an effective and automatable predictive model based on such charac-
teristics (e.g., age, lines of code) [OWB07].

Zimmermann and Nagappan used dependencies between binaries in Windows server 2003
to predict defect [ZN08]. Marcus et al. used a cohesion measurement based on LSI for defect
prediction on several C++ systems, including Mozilla [MPF08]. Binkley and Schach devised a
coupling dependency metric and showed that it outperforms several other metrics in predicting
run-time failures [BS98]. Neuhaus et al. used a variety of features of Mozilla (past bugs, package
imports, call structure) to detect vulnerabilities [NZHZ07]. In an empirical study of 52 Eclipse
plug-ins, Schröter et al. showed that design data, such as import relationships, can predict
post-release failures [SZZ06].

Pinzger et al. empirically investigated the relationship between the fragmentation of devel-
oper contributions and the number of post-release defects [PNM08]. To do so, they measured
the fragmentation of contributions with network centrality metrics computed on a developer-
artifact network. Wolf et al. analyzed the network of communications between developers to
understand how they are related to issues in integration of modules of a system [WSDN09].
They conceptualized communication as based on developer’s comments on work items.

Zimmermann et al. tackled the problem of cross-project defect prediction [ZNG+09], i.e.,
computing prediction models from a project and applying it on a different one. Their experi-
ments showed that using models from projects in the same domain or with the same process does
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not lead to accurate predictions. Therefore, the authors identified important factors influencing
the performance of cross-project predictors.

Bird et al. studied a problem common to many bug databases and affecting a number of
defect prediction approaches [BBA+09]: They observed that the set of bugs that are linked
to commit comments (and thus to software artifacts) is not a fair representation of the full
population of bugs. Their analysis of several software projects showed that there is a systematic
bias that threatens the effectiveness of bug prediction models. However, the technique used to
link software artifacts with problem reports [FPG03; ZPZ07] still represents the state of the art.

Summing up

We observe that both case studies and the granularity of approaches vary. Varying case studies
makes a comparative evaluation of the results difficult. Validations performed on industrial
systems are not reproducible, because it is not possible to obtain the data that was employed.
There is also some variation among open-source case studies, as some approaches have more
restrictive requirements than others. Concerning the granularity of the approaches, some of
them predict defects at the class level, others consider files, while others consider modules or
directories (subsystems), or even binaries. While the goal of some approaches is classification,
i.e., predicting the presence or absence of bugs for each component, the goal of others is ranking,
i.e., predicting the amount of bugs affecting each component in the future, producing a ranked
list of components.

These observations lead to the lack of comparison between approaches and the occasional
diverging results when comparisons are performed. As a consequence, we identify the need of
a benchmark to establish a common ground for comparison. We propose such a benchmark in
Chapter 7.

2.6 Design Flaw Detection and Analysis

Researchers devised a number of approaches to address the problem of detecting and correcting
design flaws in object-oriented software systems. Marinescu transformed informal design rules,
guidelines, and heuristics [GHJV95; Rie96; FBB+99] into detection strategies [Mar04], metrics-
based logical conditions that detect violations against design guidelines. Studying various large-
scale software systems, Marinescu provided evidence that these strategies accurately spot design
issues in object-oriented programs [Mar04]. Ra̧tiu and Gîrba [RDGM04] applied such detection
strategy concept to find design problems revealed by a software system’s history. Trifu et al.
proposed correction strategies to refactor design problems detected using the suite of detection
strategies defined by Marinescu [TSG04].

Later, Lanza and Marinescu expanded the detection strategies previously proposed by Mari-
nescu, and—analyzing statistical information from many industrial projects and generally ac-
cepted semantics—they deduced many single and combined threshold values for the detection
[LM06]. They show in detail how to identify design flaws in code, which solution strategies can
be used, and how to devise possible remedies.

Salehie et al. proposed a metric-based heuristic framework to detect and locate object-
oriented design flaws similar to those illustrated by Marinescu [SLT06].

Wettel and Lanza enriched the CodeCity visualization [WL07b] with design flaws informa-
tion [WL08b]. Their approach, called disharmony map, locates software artifacts that are flawed



36 2.7 Summary

according to the detection strategies mentioned above. They display software systems using a 3D
visualization technique based on a city metaphor [WL07b], and they enrich such a visualization
with the results returned by a number of detection strategies.

Mäntylä and Lassenius conducted an empirical study in a Finnish software product company
on the relationship between code smells and software evolvability [ML06]. They measured code
smells both automatically, based on program analysis and source code metrics, and subjectively,
based on developers’ evaluations. The authors concluded that decisions concerning software
evolvability improvement should be based on a combination of subjective evaluations and code
metrics, as the empirical study showed that they do not fully correlate. Further, Mäntylä in his
PhD work [M0̈9; M1̈0] proposed a group of code smells based on a study of 563 evolvability
issues found in industrial and student code reviews.

Khomh et al. investigated the relationship between code smells and change-proneness [KPG09].
They analyzed multiple releases of Azureus and Eclipse to answer the following question: Are
classes with code smells more change-prone than other classes? The results of their empirical
study demonstrated that classes with code smells are indeed more change-prone than others,
and that specific smells are more correlated than others to change-proneness.

2.6.1 Summing Up

The presence of design flaws in a software system has a negative impact on the quality of the
software, as they indicate violations of design practices and principles, which make a software
system harder to understand, maintain, and evolve. Design flaws were thoroughly analyzed in
literature: To find good metrics and thresholds for their classification [Mar04; LM06; SLT06], to
propose correction strategies and refactorings [TSG04; LM06], to visualize them [WL08b], and
to put them in relation to code evolvability [ML06] or change-proneness [KPG09]. However,
nobody so far analyzed the relationship between design flaws and software defects, a tangible
effect of poor software quality. We investigate such a relationship in Chapter 10, conducting an
empirical study on six open-source systems.

2.7 Summary

We started this chapter by looking at the history of software evolution, to understand why soft-
ware development tools are not adequate for software evolution analysis. One of the problems
is the lack of integration between the various pieces of information produced during software
development, such as SCM meta-data, source code, problem reports, etc. To tackle this problem,
researchers proposed improvements of development tools (e.g., IDEs, SCMs) and approaches
that integrate and model different software repositories to support software evolution analysis.
We surveyed these approaches, concluding that:

• Integration. Approaches that model and combine different evolutionary aspects are a mi-
nority, as most software evolution analysis techniques focus on a single type of data. More-
over, the survey revealed that only one approach integrates source code snapshots, SCM
meta-data and software defects [FPG03].

• Flexibility. According to our survey, only three approaches were used to build (few) anal-
ysis techniques on top, and only two approaches were extended to model new pieces of
evolutionary information.
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• Modeling defects. None of the surveyed approaches models software defects as first class
entities that evolve over time.

To overcome these limitations, we propose an approach—presented in the next chapter—
that integrates different aspects of source code and defects evolution. On top of this approach,
we devise a number of analysis techniques, related to different research areas. We surveyed each
of these research areas, identifying potentials for improvement:

• Change coupling analysis. We observed that existing change coupling analysis techniques
work either at the architecture level, leading to a loss of detailed information, or at the file
level, leading to an explosion of the data to be analyzed. None of the existing approaches
integrates both levels of granularity.

We also noticed that, while researchers considered the presence of change coupling a bad
symptom, nobody empirically assessed whether it correlates with the presence of software
defects.

• Bug Analysis. Our survey revealed that little effort was spent to model the evolution of
bugs and to exploit the information residing in their histories. In particular, no approach
was proposed to analyze the evolution of defects.

• Bug prediction. Bug prediction techniques vary with respect to the granularity of the pre-
diction (file/class level or module/package level), the task they perform (classification or
ranking) and the case studies they were validated on. These differences lead to the lack of
comparison between approaches and the need of a benchmark to establish a baseline.

• Design flaw detection and analysis. The presence of design flaws in a software system has
a negative impact on software quality attributes such as maintainability and evolvability.
However, no study was carried out to investigate the relationship between design flaws
and the presence of software defects.

As we employ software visualization in three of our analysis techniques, we also presented a
survey of visualization approaches, showing that visualization is an effective means to analyze
large amounts of data, typical of large and long-lived systems.

One last observation is orthogonal to the surveyed research areas and concerns all MSR
approaches. In a recent work [Rob10], Robles reviewed all articles (171) published in the pro-
ceedings of the international workshop on MSR (2004-2007) and working conference on MSR
(2008-2009). He investigated whether the experiments presented in these articles can be repli-
cated. The study revealed that in most of the cases MSR approaches cannot be replicated entirely,
leading the author to conclude that replicability is a significant issue for MSR in particular, and
software evolution analysis in general. In our approach, presented in the next chapter, we also
address the issue of replicability.



38 2.7 Summary



Chapter 3

Modeling and Supporting Software
Evolution

In our thesis work we created an approach that, by modeling software evolution, supports an
extensible set of software maintenance tasks. Our approach consists of two parts: In the first one
we created a meta-model of evolving software systems, and we devised a framework that imple-
ments the meta-model and serves as a basis for analysis. The meta-model and the framework
overcome the limitations that we identified when surveying previous approaches. We convert
such limitations in requirements, and list them in Table 3.1. In the second part of the disserta-
tion, we propose a number of analysis techniques—on top of our framework—to support several
maintenance tasks. In this chapter, we present the first part of our research.

Table 3.1. Requirements for a software evolution meta-model and framework

R1 Integration of different evolutionary aspects.
R2 Flexibility with respect to creating new techniques on top of the approach and extending the

meta-model.
R3 Modeling of software defects as first class entities.
R4 Replicability of the analyses performed and availability of the data.

Structure of the chapter. In Section 3.1 we describe how we model an evolving software
system, including source code and software defects. In Section 3.2 we present the software
evolution framework that we implemented to validate our approach, and we outline the analysis
techniques that we built on top of it in Section 3.3. In Section 3.4 we discuss the role of tools in
our approach, and we conclude in Section 3.5.

3.1 Modeling an Evolving Software System

There is a number of aspects about a software system that can be considered when modeling its
evolution, residing on various repositories, such as defect databases, email archives, versioning
system repositories. In our approach we focus on source code and software defects.

39
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3.1.1 Modeling Source Code

Among the various evolutionary aspects we selected source code for two main reasons:

1. While there are many repositories revolving around software projects, many of them con-
tain incomplete or not updated pieces of information. For example, requirements and
design documents, use cases and, in general, documentation are often outdated [KC98];
Information that can be extracted from e-mail archives might refer to old system compo-
nents that were removed or completely restructured. On the other hand, source code is the
most reliable source of information: It generates the binaries that run the actual software
system, and it is the final product of the development process.

2. Developers spend a considerable fraction of maintenance effort for reading, restructuring
and refactoring source code. For example, researchers estimated that software maintainers
spend, at least, 50% of their time to understand the source code [FH83; Sta84].

For the mentioned motivations we claim that any software evolution meta-model should take
the source code into consideration.

In our approach we model source code as an evolving entity, thus modeling its history. To do
so, we consider two types of information that can both be extracted from an SCM (or versioning
system) repository: Source code snapshots and SCM meta-data recorded by the SCM at commit
time. Figure 3.1 shows an example of these two types of information.
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Figure 3.1. An example of source code snapshots and SCM meta-data

Source code snapshots are complete versions of a software system that can be retrieved—
for example—from an SCM by performing a “check out” operation. Such an operation can
be performed with respect to a particular version number or timestamp. For example, in the
scenario depicted in Figure 3.1, one can check out a snapshot at version 3 or at any timestamp
between April 28, 2010 - 10:05 and May 3, 2010 - 16:45, obtaining the same system version.
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The obtained source code snapshot would include Foo.java and Viz.java as modified in version 3,
and Bar.java as committed in version 1.

SCM meta-data consists in information describing commit operations: The version number,
who committed the code (and hence performed the changes), the timestamp (when the code was
committed) and a comment that the developers can write to describe the performed changes.
Figure 3.1 shows some examples of SCM meta-data.

This type of information has the benefit—over source code snapshots—of being lightweight,
as only the commits are described. Moreover, it contains information that cannot be found in
the source code, such as who modified the code and when. It is also possible to know the size of
the change for each file, in terms of number of lines added and removed.1

On the other hand, SCM meta-data does not provide any information about source code and,
to retrieve this data, one has to check out the code from the repository. Checking out a version of
a software system every—for example—three days might be very time consuming (especially for
large systems) and it might be that the system did not change much in such a short time period.
For these reasons we opted for a mixed approach, in which we consider SCM meta-data and
bi-weekly system snapshots. In this way, we have all the pieces of information about source code
every two weeks, and—in between—the evolution is captured by the SCM meta-data, which also
provides information orthogonal to the source code (e.g., authors, timestamps, comments).

Versioning System Meta-Model

The versioning system meta-model describes the evolution of software artifacts as recorded by a
versioning system (or SCM). Figure 3.2 shows a class diagram of this meta-model.

Person
scmAccounts
email
name

Comment
text

Transaction
author
timestamp
comment
versions

Artifact
path
name
versions

Module
name
artifacts

Version
versionNumber 
action
linesAdded
linesRemoved
transaction
bugLinks
classLinks

Project
repositoryUrl
metaData
artifacts
transactions
authors
modules

*

*

1 *

1

1

InferredLink
confidence

BugVersionLink
bugs
versions

VersionClassLink
class
version

*
*

1

1

SCMAccount

CVSAccount SVNAccount

1

*

Figure 3.2. A class diagram of the versioning system meta-model

An artifact (typically a file) has a name, a path (the location in the repository) and several
versions—one per transaction—where each version can be linked to a source code entity (i.e., a
class) and one or more software defects. Since these links are not formally defined and we have
to infer them with analysis techniques (detailed later in Section 3.2.2), we decided to model

1In CVS and SVN a modified line is considered as a line added and one removed.
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them with two ad-hoc classes, where we also describe the confidence, i.e., an indication of the
quality of the inferred links. Given an artifact, each of its versions has a unique version number,
the number of lines added and removed (with respect to the previous version) and an “action”
identifier to describe the type of change: Addition or deletion if the artifact is added or removed
from the repository, modification otherwise.

A transaction involves a set of artifacts and defines their versions; The transaction is per-
formed at a certain timestamp by an author (modeled with Person), who also writes a comment
to documented the committed changes. An artifact, in the versioning system, belongs to a project
and, if the project is modularized, it also belongs to a module. In some software projects the
system modularization (list of modules and artifacts they contain) can be retrieved directly from
the versioning system; In other projects we have to find the module decomposition somewhere
else (e.g., in the documentation) and manually import it in the versioning system model. In the
project class, we also keep information about the url of the repository and the raw meta-data
that we use to extract and populate the versioning system model.

The class Person has a particular role in our meta-model, as it is shared by the versioning
system and the bug meta-models. A person has a name, can have one or more SCM accounts
(account names retrieved from SCM meta-data), and can have an e-mail (retrieved from a bug
database). Since we retrieve data from both versioning system repositories and bug databases,
we might find the same person represented by two different pieces of information, e.g., an e-
mail of a developer assigned to fix a bug and an SCM account. We tackle this aliasing problem,
i.e., the same person represented by different pieces of information, by manually inspecting the
data and figuring out when it refers to the same person. More sophisticated approaches can be
used, as the one proposed by Bird et al. based on fuzzy string similarity, domain name matching,
clustering, heuristics, and manual post-processing [BGD+06].

Source Code Meta-Model

To model source code snapshots, we use the FAMIX meta-model, a language independent rep-
resentation of object-oriented code, including the concepts of classes, attributes, methods, pack-
ages, inheritances, accesses, invocations, etc. More details about FAMIX can be found in [DTD01].

3.1.2 Modeling Software Defects

Software defects, often considered as an unwanted “side dish” of the evolution phenomenon,
in fact represent a valuable source of information that can lead to interesting insights about a
system, that would be hard or impossible to obtain relying exclusively on the source code. In
several software projects, developers keep track of defects by means of bug tracking systems
such as Bugzilla, Jira, Scarab or Trac.2

Figure 3.3 shows the distribution of ca. a quarter of a million Mozilla’s bugs,3as recorded
in Bugzilla from September 1998 to April 2003, according to their lifetime. We define lifetime
as the time elapsed between the moment in which the bug was reported and its last activity
(modification of one of its properties). With this example distribution, we want to show that
bugs indeed live long, as more than 50% of the considered Mozilla’s bugs lived more than six
months. For this reason, we argue that software defects should be modeled as first class entities:

2Available respectively at: http://www.bugzilla.org, http://www.atlassian.com/software/jira/, http://

scarab.tigris.org and http://www.mantisbt.org
3http://www.mozilla.org

http://www.bugzilla.org
http://www.atlassian.com/software/jira/
http://scarab.tigris.org
http://scarab.tigris.org
http://www.mantisbt.org
http://www.mozilla.org
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Figure 3.3. Distribution of Mozilla’s bugs according to their lifetime. More than 50% of bugs
lived more than six months.

We consider not only several properties of bugs (such as the problem description, its severity,
the condition in which it was detected, the people involved for fixing / testing it, etc.), but also
their histories, i.e., the sequences of states that they traverse.

Bug Meta-Model

The bug meta-model describes the structure of a software defect. It is an abstraction of the
Bugzilla implementation: We chose Bugzilla because it is among the most used bug tracking
systems in the open source community, and because the models of other systems, such as Trac,
Scarab and Jira, are simplifications of the Bugzilla one.

Figure 3.4 provides an example of a bug report from the Eclipse project. A bug report has
a number of properties that we describe in our bug meta-model depicted in Figure 3.5. These
properties are: the problem, the criticality, the state in which the bug is, the condition in which
the bug was detected, the people involved, the dependencies with other bugs and with the source
code and the history of the bug.

The problem. It includes the unique identifier, the (short) description of the problem, a list of
keywords describing the problem, when the problem was reported (creationTimestamp) and its
location in the system. The location is identified by the pair product-component, where a prod-
uct contains several components. Each bug has a list of comments (BugComment), describing
possible solutions, and a list of attachments such as screenshots or patches.

The criticality. It is indicated by the fixing priority (from 1 to 5) and by its severity. The
possible severities are, in order: Blocker (application unusable), critical, major, normal, minor,
trivial (minor cosmetic issue), enhancement (request of enhancement).

The state. The state of a bug is composed of its status and its resolution. The status identifies
at which stage of the life cycle the bug is. The possible values are: Unconfirmed, new, assigned,
resolved, verified, closed and reopened. The resolution indicates whether and how the problem
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Figure 3.4. An example of a bug report
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45 3.1 Modeling an Evolving Software System

was solved, once the bug reaches the resolved status. Possible values here are: Fixed, invalid,
won’t fix, not yet, remind, duplicate, and works for me.

Figure 3.6 shows all possible bug statuses and transitions, based on the Bugzilla system.4

Each possible status is associated with a different color. Green colors represent statuses in which
the bug is considered fixed (i.e., resolved, verified or closed), while red colors represent statuses
in which the bug has to be fixed (i.e., new, assigned or reopened). We consider reopened as the
most critical status, since a first attempt did not fix the bug. Unconfirmed is associated with cyan,
since it is not known yet if the reported bug is real. In the remainder of this dissertation, and in
particular in Chapter 5, we use the same color mapping for bug statuses.

Unconfirmed

New Resolved

Reopened

Verified

Assigned

Closed

Figure 3.6. The Bug Status Transition Graph

The typical life cycle of a bug is the following: It is reported (either new or unconfirmed
according to the privileges of the reporter), it is assigned to a developer for fixing (assigned) and
then he/she proposes a solution (resolved) or decides that a solution is not needed (for example
when the resolution is set to duplicate or invalid or won’t fix). When the bug is resolved, the
quality assurance tests the proposed solution and sets the bug status to one of the following:
Verified, closed, reopened, unconfirmed. The bug status transition graph does not have a final
state, because a bug can always be reopened.

The condition. The settings in which the bug was detected, e.g., operating system and platform.

The people. The set of people involved includes the reporter of the bug, the developer in charge
to fix it (assignedTo), the quality assurance (qa) person who test the solution and a list of people
who are interested in being notified of the bug fixing progress (cc).

The dependencies. Bugs compose graphs: Each bug b can have a list of other bugs that need
to be fixed before b can get fixed (dependsOn). Symmetrically, each bug b can have a list of
other bugs that can be fixed only after b get fixed (blocks).

The source code. Bugs might be linked with the software artifact they affect. These links are
important because they act as bridges between the versioning system and the bug meta-models.
As previously mentioned when discussing the versioning system meta-model, bug-version links
are not formally defined and hence we use a confidence parameter to model this fact.

4See http://www.bugzilla.org/docs/2.18/html/lifecycle.html
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The history. Our meta-model takes time into account. Every field of a bug can be modified over
time thus generating a bug activity (BugActivity). The activity records which field is changed
(field), when (timestamp), by whom (author) and the pair of old and new values (added and
removed). Activities are important because they allow us to keep track of a bug’s history and life
cycle, i.e., the sequence of statuses the bug went through. Through bug activities we fulfill our
requirement R3: Modeling of software defects as first class entities that evolve over time and
thus have histories.

3.1.3 Mevo: A Meta-Model of Evolving Software Systems

We discussed how to model versioning system data, source code and software defects in three
distinct meta-models. Now we combine them in Mevo, a unique meta-model of evolving soft-
ware systems, depicted in Figure 3.7. Other approaches for modeling software evolution ex-
ist (e.g., Hismo [GD06], RHDB [FPG03; APGP05], Kenyon [BEJWKG05], Hipikat [uMSB05],
Tesseract [SMWH09]): We extensively discussed them when surveying related work in Sec-
tion 2.2.
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Figure 3.7. Mevo: A meta-model of an evolving software system. It is composed of three linked
parts: The versioning system, the source code and the bug meta-models.

With the Mevo meta-model we fulfill our requirements for modeling an evolving software
system. We wanted our meta-model to integrate different evolutionary aspects (requirement R1,
cf. Table 3.1): Mevo combines the history of a software system (as recorded by a versioning
system), multiple snapshots of the source code and information about software defects affecting
the source code. The meta-model is extensible (requirement R2): We show in Chapter 8 how
Mevo can be augmented to model e-mail data. Finally, in Mevo we model software defects as
first class entities that evolve over time (requirement R3), and we model their histories by means
of bug activities.
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3.2 Our Approach in Action

We presented our meta-model to describe evolving software systems. Now we discuss how
we use such a meta-model in practice, i.e., how we populate its instances and which analysis
techniques we build on top of it. Figure 3.8 provides an overview of our approach “in action”,
showing the two phases that compose it: data retrieval and pre-processing, and applications.
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Figure 3.8. The overall view of our approach in action, divided in data retrieval and pre-
processing (links inference) and applications

Before being able to do any analysis, we need to retrieve and pre-process the data, i.e., to pop-
ulate the Mevo meta-model. First we extract and process the data from object-oriented source
code, versioning system repositories and bug databases. Table 3.2 shows which languages, which
versioning systems and which bug tracking systems we support in our implementation. The data
is then stored, according to the Mevo meta-model specification, into a database. Then we link
the different parts together, i.e., we integrate the three parts of the meta-model.

Table 3.2. Languages and technologies supported in our approach implementation

Supported languages C++, Java, Smalltalk
Supported versioning systems CVS, SVN, Store [Sto00]
Supported bug tracking systems Bugzilla, Jira
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3.2.1 Retrieving the Data and Populating the Models

We obtain multiple source code snapshots of a software system by either downloading them
from the system web site or by performing “check out” operations (one per snapshot) from the
versioning system repository. Once we obtained the source code snapshots, we parse them with
inFusion (for Java and C++) or Moose5 [DGN05] (for Smalltalk), obtaining FAMIX models that
we use to populate the corresponding part of Mevo.

To populate the versioning system part of Mevo, we use different approaches: For CVS and
SVN we parse the versioning system log files, which provide all the pieces of information about
the history of all versioned artifacts. Since SVN logs—as opposed to CVS logs—do not contain
information about lines added and removed, we have to do some additional data extraction
for SVN: We perform a SVN diff for each version of each file to compute the lines added and re-
moved. In the case of Store, historical information about versioned software artifacts is available
as Smalltalk objects: We process these objects and populate the versioning system model.

Finally, to instantiate the bug meta-model, we query bug databases with a web interface
(available for both Bugzilla and Jira), which provides bug data in XML format. However, as
the web interface does not provide bug activity information in XML format, to import the data
concerning bug histories we have to parse HTML pages. When importing bug data, we filter
out bug reports whose resolution is marked as “duplicate” or “invalid”. We also disregard bugs
whose severity is “enhancement” because they are not related to corrective maintenance.

3.2.2 Pre-processing and Linking the Data

Before linking the three parts of the Mevo meta-model, if the versioning system from which we
imported the data is CVS, we need to pre-process the data. In Mevo, we model the concept
of transaction and each transaction has a list of artifact versions. While SVN and Store mark
co-changing artifacts at commit time as belonging to the same transaction, in CVS the artifacts
committed in the same transaction must be inferred from the modification time of each of them.

Reconstructing transactions

To reconstruct the transactions, we take into account the following commit data: CVS account
name, comment and timestamp. Given two or more commits, a necessary (but not sufficient)
condition for them to be considered in the same transaction is that the user names and the
comments coincide. We consider them to be in the same transaction if also a time condition
holds. For that, two possible techniques are the “fixed time window” and the “sliding time
window” approach, proposed by Zimmermann and Weißgerber [ZW04] (depicted in Figure 3.9):

1. In the fixed time window approach, the beginning of the time window is fixed to the
first commit (artifact1, version 1.1). All other commits with a timestamp included in the
window are considered to be in the same transaction (only artifact2 version 1.4).

2. In Zimmermann’s sliding window approach, the beginning of the time window is moved
to the most recent commit recognized to be in the transaction. By doing this, artifact3

version 1.2 is also included in the transaction. The transactions reconstructed using this
approach include commits taking longer than the size of the time window. We use a time
window of 200 seconds as proposed by Zimmermann and Weißgerber [ZW04].

5inFusion and Moose are available at http://www.intooitus.com and http://www.moosetechnology.org

http://www.intooitus.com
http://www.moosetechnology.org


49 3.2 Our Approach in Action

artifact1

Time window

Time1.1

1.4

1.2
Commitartifact2

artifact3

(a) Fixed time window

Time window

Moved time window
1.1

1.4

1.2

artifact1

artifact2

artifact3

(b) Sliding time window

Figure 3.9. Reconstructing CVS transactions: Fixed and sliding time window

Linking source code and versioning system data

After pre-processing the versioning system data, i.e., reconstructing CVS transactions, we link
the versioning system part of Mevo with the source code and the bug parts, respectively with
the version-class and bug-version relationships. Through these two relationships, software bugs
and source code classes are also (indirectly) linked. However, Figure 3.10 shows that, in our
implementation, the linking is possible only for certain combination of languages, versioning
systems and bug tracking systems. On the other hand, it is always possible to populate individual
parts of the meta-model, as for example the source code or the versioning system part only.
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Figure 3.10. Possible linkings among the different parts of the Mevo meta-model in our imple-
mentation

As Figure 3.10 shows, in our implementation it is not possible to link C++ classes with any
versioning system artifact. Concerning Smalltalk and Store, the linking is straightforward as
classes and versions, both available as Smalltalk objects, are already linked to each other.

To link Java classes with CVS or SVN artifacts, we use an approach based on the corre-
spondence between the directory structure in the versioning system and the package nesting
structure (or fully qualified name) in Java. With this approach, the class Layout shown in Fig-
ure 3.11 is translated in the following path to be found in the versioning system repository:
../org/uml/ui/Layout.java.
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Figure 3.11. An example of package nesting. With our linking approach the Java class Layout is
translated in the path ../org/uml/ui/Layout.java to be found in the versioning system repository.

In the Mevo meta-model we consider multiple source code snapshots: For this reason, in a
model we can have multiple FAMIX classes representing multiple versions of a class over time
(one for each snapshot in which the class existed). We link each FAMIX class with an artifact
version of the versioning system model. The selection of the artifact version is based on the
timestamp of the transaction in which the version was committed. Let Foo be a FAMIX class and
tFAMIX the timestamp of the source code snapshot containing Foo: The artifact version FooVer
that we link to Foo is the most recent one6 for which the following condition holds

tFooVer ≤ tFAMIX (3.1)

where tFooVer is the timestamp of the transaction in which FooVer was committed. Figure 3.12
shows an example of linking between multiple versions of a FAMIX class and artifact versions.
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Figure 3.12. Linking multiple versions of the Layout FAMIX class with artifact versions of the
versioning system model

6The most recent artifact version is the one committed in the most recent transaction.
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Linking versioning system and bug data

The last part of the linking process deals with bugs and artifact versions, i.e., the connection
between the versioning system and the bug meta-models, represented by the class BugVersionLink
(cf. Figure 3.2).

An artifact version in the versioning system contains a developer comment written at commit
time, which often includes a reference to a problem report (e.g., “fixed bug 12345”). Such
references allow us to link problem reports with versioning system artifacts, and therefore with
source code entities, since versioning system artifacts and FAMIX classes are already linked.
However, the link between a CVS / SVN artifact and a Bugzilla / Jira problem report has not yet
been formally defined. To find a reference to the problem report id, we use pattern matching
techniques on the developer comments, an approach widely used in practice [FPG03; ZPZ07].
To choose which regular expression to use to detect the links, we apply it on sample comments
taken from the software project under study. Since some bug references are just plain numbers,
without keywords such as “fix” or “bug”, it is possible to obtain false positives. Thus, in our
algorithm, each time we find a candidate reference to a bug report, we check that a bug with
such an id exists, and that the date in which this bug was reported is before the timestamp of
the commit comment in which the reference was found (a simple sanity check that the bug is
fixed after being reported, cf. Figure 3.13).
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Figure 3.13. Linking versioning system artifacts with bug reports: We first detect bug ids in
commit comments and then check that the fix was committed (commit timestamp) after the
bug was reported (bug creation timestamp).

As depicted in Figure 3.2, the class BugVersionLink has three attributes: Confidence (inherited
from InferredLink), bugs and versions. We use the confidence attribute to model the uncertainty
of the links, i.e., the fact that they have to be inferred with heuristics. Possible values for the
confidence range from 1 to 10, with a default value of 6. Bugs and versions model the many-to-
many relationship between artifact versions and bug reports: In fact, a developer can fix multiple
bugs in the same commit, thus writing a commit comment such as “fixed bugs #123 and #130”.
On the other hand, bugs can be fixed more than once, i.e., in different commits: It is the case
of re-opened bugs. For such bugs it is not clear, without additional knowledge, whether the first
attempt to fix the bug was wrong—and thus “overwritten” by subsequent fixes—or was right
but incomplete—thus “completed” by subsequent fixes. In our approach, when we find multiple
commits fixing the same bug, we perform the following operations:

1. We check that the fixes, i.e., the commits having the bug reference in the comment, were
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the only ones committed between two re-opened events or between the creation and a re-
opened events (see Figure 3.14). In case there are multiple fixes between two re-opened
events, we filter them out, as the data is not consistent (a bug must be re-opened before
being fixed again).

Time

Bug reported Bug re-opened Bug re-opened Bug re-opened

Fix committed Fix committedFixes committed
(filtered out in
our approach)

Figure 3.14. Linking fixes (commits fixing a bug) with a bug re-opened several times: If there
are multiple fixes between two re-opened events, we filter them out, as the data is not consistent
(a bug must be re-opened before being fixed again).

2. We link all the fixes (satisfying the previous condition) to the bug report, by means of the
BugVersionLink class.

3. We decrease the confidence value of BugVersionLink proportionally to the number of fixes,
i.e., the greater the number of commits fixing a bug, the lower the confidence of each link
between the fix and the bug. The rationale behind this choice is that the more attempts
were required to fix a bug, the lower the impact of each attempt.

3.2.3 Limitations

Since the data sources from which we are populating our meta-model were not designed for this
purpose, there are a number of technical issues that have to be considered.

Generality vs Implementation. Although the Mevo meta-model is general and independent
from the language (as long as it is object-oriented), the versioning system and the bug tracking
system, our approach supports only certain languages (Java, C++ and Smalltalk), versioning
systems (CVS, SVN and Store) and bug tracking systems (Bugzilla and Jira). Moreover, the
complete meta-model—including the versioning system, the bug and the source code parts—can
be exploited only with the Java language and the CVS or SVN versioning system, as illustrated
in Figure 3.10. In fact, in our implementation, the linking between source code entities and
versioning system artifacts works for Java and Smalltalk (not for C++), but for Smalltalk / Store
there is no link with a bug tracking system. For this reason, in our thesis work, we mainly focus
on software projects developed in Java using CVS or SVN, with few case studies in Smalltalk /
Store and none in C++.

Java Inner Classes. A second issue comes from the file-based nature of versioning systems such
as CVS and SVN, and the way inner classes are defined in Java. In fact, they are defined in the
same file as the container class, and so the same versioning system artifact might point to several
classes (the container class and the inner classes). For this reason, in our approach we filter out
Java inner classes.
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Renaming. In the Mevo meta-model the identity of a versioning system artifact is based on
its name. In the versioning system, renaming an artifact (or moving it to a different directory)
is seen as an addition of a new artifact (with the new name) and a removal of an old artifact
(with the old name). In our approach, we do not handle renaming, i.e., we model it as the
versioning system, with an addition and a removal. Researchers proposed techniques to manage
the identity of software artifacts, robust to renaming events [APM04; KN06]. However, we did
not implement these techniques in our approach.

Linking Bugs. Another technical issue concerns linking versioning system artifacts with bugs:
The pattern matching technique we use to detect bug references in commit comments does not
guarantee that all links are found. In fact, all the links that do not have a bug reference in a
commit comment cannot be found with our approach. Bird et al. recently studied this problem
in bug databases [BBA+09]: They observed that the set of bugs which are linked to commit
comments is not a fair representation of the full population of bugs. Their analysis of several
software projects showed that there is a systematic bias that might threaten the effectiveness of
techniques validated on bug datasets, such as bug prediction models. However, the approach
based on pattern matching represents the state of the art in linking bugs to versioning system
artifacts [FPG03; ZPZ07].

Non Bugs. Antoniol et al. showed that a considerable fraction of problem reports marked as
bugs in Bugzilla (according to their severity) are indeed “non bugs”, i.e., problems not related
to corrective maintenance [AADP+08]. To tackle this issue, we manually inspected statistically
significant samples of bugs linked with versioning system artifacts, and found that—in all the
analyzed software projects—more than 95% of them were real bugs. This is not in contradiction
with the findings of Antoniol et al. [AADP+08]: Bugs mentioned as fixes in commit comments
are intuitively more likely to be real bugs, as they got fixed. As a consequence, the impact of this
issue on our experiments is limited.

Large Commits. The way developers use versioning systems impacts the quality of our models.
In particular, one problem that might pollute our data consists in large commits, i.e., transactions
involving a large number of files. We distinguish two types of large commits: The first one—
involving a relatively small amount of files—groups two or more conceptual changes, while the
second one concerns a single conceptual change but involves hundreds of files.

We illustrate the first type with the following example: A developer modified the files Foo.java
and Bar.java to fix the bug 745, and the files Boo.java and Baa.java to add a new feature. He then
committed all the changes together (in the same transaction), thus grouping two conceptual
changes: a bug fix with an addition of features. The problem with these commits concerns
the linking between software artifacts and bugs. In the previous example—supposing that the
developers wrote “Fixed bug 745” as a commit comment—our approach would link the bug 745
not only with Foo.java and Bar.java (correct) but also with Boo.java and Baa.java (wrong). As a
consequence, we rely on developers’ meticulousness for the quality of our data.

Regarding the second type of large commits, a representative example is the license update,
which can involve all source code files. The problem with these commits deals with co-change
analysis, when we count how many times software artifacts change together. One possible
solution is to filter out the transactions that involve more than a certain number of artifacts (e.g.,
50 or 100 depending on the size of the system). However, since the choice of the best threshold
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depends on the system and on the type of analysis that one wants to conduct (and might also
require some manual inspection), we do not perform the filtering during the pre-processing of
the data, but leave it as part of the subsequent analyses.

Table 3.3. Commit size in several software projects

Project # commits % 1 file % 2-4 files % 5-9 files % 10+ files
Ant 14,078 96.25 3.35 0.27 0.13
Django 4,812 87.43 12.57 0 0
Gcc 87,900 47.26 40.64 6.64 5.46
Gimp 23,215 91.68 7.85 0.33 0.13
Glib 5,684 88.79 10.66 0.44 0.11
Gnome-desktop 4,195 89.92 9.58 0.38 0.12
Gnome-utils 6,611 80.34 19.32 0.33 0.02
Httpd 39,801 56.17 40.76 2.89 0.17
Inkscape 14,519 90.92 8.83 0.22 0.03
Jakarta 70,654 77.43 20.74 1.64 0.18
Jboss 5,962 95.67 4.29 0.03 0
KDE 817,795 78.48 20.59 0.83 0.10
Lucene 14,078 80.52 18.45 0.93 0.10
Ruby on Rails 9,251 96.25 3.35 0.27 0.13
Spamassassin 10,270 91.17 8.26 0.50 0.08
Subversion 21,729 50.26 47.83 1.70 0.21
Total 1,158,824 75.69 22.41 1.38 0.52

Table 3.3 presents statistics gathered from 16 open-source software projects. The table shows
that (1) most of the commits (∼ 75%) involve one file only, (2) about 22% of the commits are
changes of two, three or four files, (3) while only less than 2% of the commits involve more than
four files. From this data we conclude that the impact of large commits (especially the second
type) is limited.

3.3 Applications

Once we populated our Mevo meta-model, we can proceed with the subsequent analyses on top
of it. In the following, we briefly introduce the analysis techniques, whereas we detail each of
them in a dedicated chapter in the remainder of the dissertation.

Change coupling analysis (cf. Chapter 4)
Meta-model: The versioning system part of Mevo Tool: Evolution Radar
We devise a visualization-based approach that integrates co-change information (change cou-
pling) at different levels of abstraction: The module level, to understand the relationships among
system’s modules, and the file level to uncover the causes of the couplings. The analysis tech-
nique supports the retrospective analysis of a software system and maintenance activities such
as restructuring and re-documentation.
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Bug analysis (cf. Chapter 5)
Meta-model: The bug part of Mevo Tool: Bug’s Life
We propose a visualization approach to support the analysis of software defects and their evolu-
tion. The technique is composed of two visualizations: The first one—aimed at studying the bug
database in the large—is helpful to understand how bugs are distributed in system components
and over time. The second visualization supports bug analysis in the small, i.e., the inspection of
bugs affecting one or few software components. The visualization facilitates the characterization
of bugs and the identification of the most critical ones.

Code-bug co-evolution analysis (cf. Chapter 6)
Meta-model: The versioning system and bug parts of Mevo Tool: Bug Crawler
We create a visual approach to uncover the relationship between evolving software and the way
it is affected by software defects. By visually putting the two aspects close to each other, we
characterize the evolution of software artifacts at different granularity levels. On top of the
visualization we define a catalog of co-evolution patterns that, due to their formal definition,
can be automatically detected in a software system.

Bug prediction (cf. Chapter 7)
Meta-model: Mevo Tool: Pendolino
We devise two defect prediction techniques based on the evolution of source code metrics, and
we compare their performance with well-known bug prediction approaches. For the comparison,
we propose a benchmark in the form of a publicly available data set consisting of several software
systems.

Bug prediction with e-mail data (cf. Chapter 8)
Meta-model: An extension of Mevo Tool: Pendolino
We investigate whether information extracted from development mailing lists can be used to
predict post-release defects or to improve existing defect prediction models. To do so, we extend
Mevo to model e-mail data, thus showing its flexibility.

Change coupling-bug correlation analysis (cf. Chapter 9)
Meta-model: The versioning system and bug parts of Mevo Tool: Pendolino
Researchers studied change coupling and observed that it points to design issues such as ar-
chitectural decay. We analyze the relationship between change coupling and a tangible effect
of design issues, i.e., software defects. We investigate whether change coupling correlates with
defects, and if the performance of bug prediction models based on software metrics can be im-
proved with change coupling information.

Software quality analysis (cf. Chapter 10)
Meta-model: Mevo Tool: Pendolino
The presence of design flaws in a software system has a negative impact on the quality of the
software, as they indicate violations of design practices and principles. We study the relationship
between software defects—tangible effects of poor software quality—and a number of design
flaws, finding that no design flaw can be considered more harmful than the others. We also
analyze the correlation between the introduction of new flaws in a software component and the
generation of defects affecting that component.
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3.4 Tool Support

Analyzing the evolution of large and long-lived software systems requires extensive tool support
due to the amount and complexity of the data that needs to be processed. Our approach is
unavoidably tied to the tools that we developed to implement our techniques in practice.

We created a framework called Churrasco [DL08b], which implements the Mevo meta-model,
with the following goals:

• Meta-model population. Churrasco supports the population of Mevo in batch mode, hiding
the data retrieval and pre-processing tasks from the users. To create a model, i.e., import
a software project to be analyzed, Churrasco provides a web interface.

• Base for analysis. The framework serves as a basis for the analysis, as it stores all the models
in a centralized database and it provides an interface that allows us to build analysis tools
on top of it.
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Figure 3.15. The main components of the Churrasco framework and the analysis tools built on
top of it

Figure 3.15 shows the main components of the Churrasco framework: (A) The importers,
which retrieve and pre-process the data from the various data sources, (B) the web interface,
which allows the users to create new models, (C) the model repository, where the Mevo meta-
model is implemented and all the models are stored, and (D) the data interface, which allows
us to build analysis tools on top of Churrasco. Figure 3.15 shows also the analysis tools that we
implemented on top of Churrasco, and which implement the applications of our approach that
we present in the following chapters:

1. The Evolution Radar visualizes integrated change coupling information, supporting the
analysis of the coupling at different levels of abstraction, i.e., the module and the file level.
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Figure 3.16. The architecture of Churrasco

2. Bug’s Life is a visualization tool that supports the analysis of bugs and bug histories in
the large (at the system level to identify critical components) and in the small (at the
component level to identify the most critical bugs).

3. BugCrawler provides interactive visualizations of code and bugs co-evolution, and it sup-
ports the automated detection of co-evolutionary patterns.

4. Pendolino is a scriptable data analysis tool that serves as a bridge to Matlab or other sta-
tistical tools. To act as a bridge, Pendolino computes and exports a variety of metrics
and properties (e.g., source code metrics, historical metrics, bug metrics, number of de-
sign flaws, change coupling measures, etc.) about Mevo models in a format that can be
imported in Matlab. We subsequently use the metrics in Matlab to create and evaluate
regression models for different tasks, such as defect prediction.

3.4.1 Churrasco’s Architecture

Figure 3.16 depicts Churrasco’s architecture, consisting of:

1. The extensible Mevo meta-model. It can be extended using the facilities provided by the
Meta-base module.

2. The Meta-base supports flexible and dynamic object-relational persistence. It uses the ex-
ternal component GLORP [Kni00] (Generic Lightweight Object-Relational Persistence),
providing object-relational persistence, to read from/write to a database. The Meta-base
also uses the inFusion tool and the Moose reengineering environment to create a repre-
sentation of the source code (C++, Java or Smalltalk) based on the FAMIX meta-model.
For software systems written in Java or C++, we first parse them with inFusion and then
we import them in Moose and in the Meta-base. For systems developed in Smalltalk, we
directly parse them in Moose and import them in the Meta-base.
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3. The Bugzilla/Jira and SVN/CVS modules retrieve and process the data from Bugzilla/Jira
and SVN/CVS repositories.

4. The Web portal represents the front-end of the framework accessible through a web browser.

5. The Visualization module supports software evolution analysis by creating and exporting
interactive visualizations.

6. The Annotation module supports collaborative analysis by enriching any entity in the sys-
tem with annotations. It communicates with the web visualization module to depict the
annotations within the visualizations.

The Meta-base

Churrasco’s Meta-base [DLP07b] provides flexibility and persistence to any meta-model, and in
particular to Mevo. It takes as input a meta-model described in EMOF and outputs a descriptor
that defines the mapping between the object instances of the meta-model, i.e., the model, and
tables in the database. EMOF (Essential Meta Object Facilities) is a subset of MOF,7 a meta-meta-
model used to describe meta-models.

The Meta-base ensures persistence through the object-relational module GLORP. By generat-
ing descriptors of the mapping between the database and the meta-model, the Meta-base can be
adapted dynamically and automatically to any meta-model. This allows us to modify and extend
dynamically any meta-model. For more details, we refer the reader to Appendix B.

The SVN/CVS and Bugzilla/Jira modules

The SVN/CVS and Bugzilla/Jira modules retrieve and process data from, respectively, SVN/CVS
and Bugzilla/Jira repositories. They take as input the URL of the repositories and then populate
the models by means of the Meta-base component. They are initially launched from the web
importer (discussed later) to create the models, and then they automatically update all the
models in the database every night, with the new information (new commits or bug reports).

The SVN/CVS module populates the versioning system model, by checking out the project
with the given repository, creating and parsing SVN/CVS log files. Checked out snapshots of the
system are then used to create FAMIX models using the inFusion and Moose external compo-
nents.

The Bugzilla/Jira module retrieves and parses all the bug reports (in XML format) from
the given repository. Then, it populates the corresponding part of the defect model. Finally,
the module retrieves all bug activities from the given repository. Since Bugzilla and Jira do
not provide this information in XML format, Churrasco parses HTML pages and populates the
corresponding part of the model.

The web portal

The web portal is the front-end of Churrasco, developed using the Seaside framework [DLR07].
It allows users both to create the models, and to analyze them by means of different web-based
visualizations. To create new models and access the visualizations, the user has to log in the web
portal.

7MOF and EMOF are standards defined by the OMG (Object Management Group) for Model Driven Engineering. The
specifications are available at: http://www.omg.org/mof/

http://www.omg.org/mof/
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(a) The importer page

(b) The project list page

Figure 3.17. The Churrasco web portal
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Figure 3.17(a) shows the importer web page of Churrasco, ready to import the ArgoUML
software project. The information needed to create a model is the URL of the SVN (or CVS)
repository and the URLs of the Bugzilla (or Jira) repository (one URL for bug reports, one for
bug activities). Since, depending on the size of the software system to be imported, retrieving
the data can take a long time, the user can also indicate an e-mail address to be notified when
the importing is finished.

Figure 3.17(b) shows the project list page of Churrasco, which contains a list of projects
available in the database, and—for a selected project—information such as the number of files
and commits, the time period (time between the first and last commit), the number of bugs, a
collection of FAMIX models corresponding to different versions of the system, etc. The page also
provides a set of actions to the user, i.e., links to the web visualizations provided by Churrasco.

The visualization module

This module offers a set of interactive web-based visualizations. Their goal is different from
the goals of the tools built on top of Churrasco: The visualizations are aimed at supporting
collaboration in software evolution analysis. For this reason, we present them in details in
Appendix A, where we discuss collaborative software evolution analysis.

Figure 3.18 shows an example visualization rendered in the Churrasco web portal. The
main panel is the view where all the figures are rendered as SVG graphics.8 The figures are
interactive: Selecting one of them will highlight the figure (red boundary), generate a context
menu and show the figure details in the information panel on the left. Churrasco provides other
panels useful to configure and interact with the visualization that we present in Appendix A.

The annotation module

The idea behind Churrasco’s annotation module is that each visualized model entity can be
enriched with annotations to let different users collaborate in the analysis of a system. We discuss
the use of annotations to support collaboration, together with two collaboration experiments, in
Appendix A.

3.4.2 Discussion

With the Mevo meta-model, we already fulfilled some requirements that we selected for a soft-
ware evolution analysis approach: The integration of different evolutionary aspects (R1) and
the modeling of software defects as first class entities (R3).

By means of the Churrasco framework, we fulfilled the remaining requirements. Churrasco
provides a flexible and extensible meta-model support (part of requirement R2), which allows us
to change and extend the meta-model definition dynamically. This was helpful in the past, when
we changed the Mevo meta-model to add new pieces of information (for example bug activities),
and it allowed us to extend Mevo with e-mail data, as presented in Chapter 8. Churrasco is also
flexible with respect to creating tools on top of it (the remaining part of requirement R2): The
framework provides a data interface to access the information it stores, i.e., Mevo models. We
exploited this interface in creating a number of tools, e.g., the Evolution Radar, Bug’s Life, Bug
Crawler and Pendolino.

8SVG (Scalable Vector Graphics) is a declarative XML-based language for vector graphics specification. It is available
at: http://www.w3.org/Graphics/SVG/

http://www.w3.org/Graphics/SVG/
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Figure 3.18. A screenshot of the Churrasco web portal showing a visualization of ArgoUML

The last requirement to fulfill is the replicability of the analyses performed and the avail-
ability of the data (R4). The Churrasco framework, together with all the models it contains, is
publicly available on the web. The analyses and the experiments that we present in the follow-
ing chapters can be replicated, as the needed data can be downloaded from the Churrasco web
portal. In some cases (e.g., for bug prediction and for software quality analysis) we even provide
dedicated benchmarks to make the replication of the experiments easier.

Other features of Churrasco include the annotation and collaboration support, discussed in
Appendix A.
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3.5 Summary

The approach presented in this dissertation is composed of two main parts: Modeling differ-
ent aspects of software evolution and analyzing them to support an extensible set of software
maintenance activities.

In this chapter, we presented the first part of the approach. We introduced Mevo, a meta-
model that integrates three aspects of the evolution of a system: (1) multiple versions of the
source code, (2) the history of software artifacts, as recorded by a versioning system, and (3)
software defects with their histories. We discussed how to retrieve these pieces of information
from distinct software repositories, and how to link them in a unique Mevo model.

To apply our approach in practice, we developed Churrasco, an extensible framework that
implements the Mevo meta-model and serves as a basis for the subsequent analyses. We de-
scribed Churrasco, its architecture and its main components.

At the beginning of this chapter, based on limitations identified in previous approaches, we
defined four requirements for modeling and analyzing software evolution (cf. Table 3.1): (R1)
integration, (R2) flexibility, (R3) modeling defects, and (R4) replicability. We discussed how
the Mevo meta-model and the Churrasco framework fulfill these requirements. Mevo integrates
various types of evolutionary information (R1) and models defects as first class entities (R3).
Churrasco provides a flexible meta-model support, and a data interface to create tools on top of
it (R2). The framework also offers a web portal from which all the models used in our analyses
and experiments can be retrieved, thus facilitating replicability (R4).

We briefly introduced the analysis techniques we devised on top of our approach, mentioning
also the tools that implement them. These techniques constitute the second part of our thesis
work, and thus we discuss them in detail in the remainder of this dissertation, together with
their validation.
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To analyze the evolution of software, one first has to model it. In the previous part of this dis-
sertation, we introduced Mevo, a meta-model of evolving software systems that integrates source
code, SCM meta-data and software defects information. We implemented such a meta-model in
Churrasco, an extensible framework that serves as a basis for building various analysis techniques.

In this part of the thesis, we present three such analysis techniques, aimed at detecting causes
of problems in software systems. These techniques focus on different aspects of software evolution,
i.e., the different parts of the Mevo meta-model, and support its analysis by means of interactive
visualizations.

In Chapter 4 we focus on change coupling, evolutionary dependencies between source code ar-
tifacts. We present a visualization technique, called Evolution Radar, that supports the analysis of
change coupling information at different levels of abstraction. Subsequently, in Chapter 5, we shift
our attention on the evolution of software defects, introducing a visual approach to study a bug
repository at different levels of granularity: In the large, visualizing the entire repository, and in
the small, rendering individual bugs. Finally, in Chapter 6, after focusing on the evolution of code
and defects in isolation, we analyze their co-evolution by means of a dedicated visualization called
Discrete Time Figure. On top of the visualization, we define a catalog of co-evolutionary patterns
that characterize the evolution of software entities.





Chapter 4

Analyzing Integrated Change
Coupling Information

In the previous chapter, we introduced Mevo—our meta-model of evolving systems—and Chur-
rasco, a framework that implements our approach to support various software evolution analysis
techniques. In this chapter, we present one of the analysis techniques built on top of Churrasco.
The technique focuses on the evolution of source code artifacts—as recorded by a versioning
system and modeled in Mevo—and processes this evolutionary information to detect change
coupling relationships.

Change coupling is the implicit dependency between two or more software artifacts that have
been observed to frequently change together during the evolution of a system [GHJ98], although
they are not necessarily structurally related (for example by means of inheritance, subsystem
membership, usage, etc.). They are therefore linked to each other from a development process
point of view: Coupled entities have changed together in the past and are likely to change
together in the future. Change coupling information reveals potentially “misplaced” artifacts in
a software system: To prevent a developer modifying a file in a system from forgetting to modify
logically related files only because they are placed in other subsystems or packages, software
artifacts that evolve together should be placed close (e.g., in the same subsystem) to each other.

As we pointed out in Section 2.4, when surveying approaches dealing with change coupling
analysis, such an analysis has two main benefits: (1) It is more lightweight than structural
analysis and (2) it can reveal hidden dependencies that are not present in the code or in the
documentation. However, our survey revealed also the main problem of previous techniques,
i.e., the lack of integration: Existing approaches work either at the architecture level or at the
file (or even lower) level. Working at the architecture level provides high-level insights about the
system’s structure, but low-level information about finer-grained entities is lost, and it is difficult
to say which specific artifact is causing the coupling. Working at the file level makes one lose the
global view of the system and it becomes difficult to establish which higher-level consequences
the coupling of a specific file has.

We devised an approach that makes up for this dichotomy by integrating both levels of in-
formation employing an interactive visualization that we named the Evolution Radar [DLL06;
DL06b; DLL09]. The Evolution Radar visualizes information both at a module-level (which
modules are coupled with each other) and at a file-level (which files are responsible for the
change couplings).

67
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With the Evolution Radar visualization we tackle the following problems:

• Presenting large amounts of evolutionary information in a scalable way.

• Identifying outliers among change coupling relationships.

• Enabling developers and analysts to study and inspect these relationships and to guide
them to the files that are responsible for the change couplings.

To validate our technique we applied it on ArgoUML and Azureus, two large and long-lived
open source Java systems, and on CodeCity, a 3D visualization tool implemented in Smalltalk.

Structure of the chapter. In Section 4.1 we introduce our approach based on the Evolution
Radar, a visualization technique that renders change coupling information and discuss its bene-
fits and shortcomings. We illustrate the use of the radar for retrospective analysis in Section 4.2
and show how it can also be used for maintenance tasks in Section 4.3. We conclude by summa-
rizing our contributions in Section 4.4.

4.1 The Evolution Radar

The Evolution Radar is a visualization technique to render file-level and module-level change
coupling information in an integrated and interactive way. It is interactive, and allows the user
to navigate and query the visualized information.

Module1

Module 
in focus

Files

d

Module2

Module3

θ

0

π/2

π

3/2 π

Figure 4.1. Principles of the Evolution Radar

The Evolution Radar shows the dependencies between a module in focus and all the other
modules of a system. The module in focus is represented as a circle and placed in the center
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of a circular surface (cf. Figure 4.1). All the other modules are visualized as sectors, whose
size is proportional to the number of files contained in the corresponding module. The sectors
are sorted according to this size metric, and placed in clockwise order. Within each module
sector, files belonging to that module are represented as colored circles and positioned using
polar coordinates where the angle and the distance to the center are computed according to the
following rules:

• Distance d to the center is a linear function of the change coupling the file has with the
module in focus, i.e., the more they are coupled, the closer the circle representing the file
is placed to the center of the circular surface. The exact definition of the distance is:

d =
R

ccmax
× (ccmax − cc) (4.1)

where R is the radius of the circular surface, ccmax the maximum value of the change
coupling and cc the value of the change coupling.

• Angle θ . The files of each module are alphabetically sorted considering the entire direc-
tory path, and the circles representing them are uniformly distributed in the sectors with
respect to the angle coordinates. Like this, files belonging to the same directory, or classes
belonging to the same package in Java, are close to each other. Although this is not the
only type of sorting possible, it was particularly useful in our experiments because it main-
tained the modules decomposition (in directories or packages) in the visualization. Other
types of sorting might expose different insights into the system.

Algorithm 1 shows the pseudo code of the layout algorithm. The Evolution Radar can map
arbitrary metrics on the color and the size of the circle figures representing files.

Algorithm 1: The Evolution Radar layout algorithm

; // Let M be the module in focus, R the radar’s radius and CC(M,f) the

change coupling between a module M and a file f

S := {All files f | f /∈ M}
cc-max := max f ∈S CC(M , f )
theta := 0
angle-step := 2π

|S|
forall m ∈ {All modules m̄|m̄ 6= M}, sorted by size do

draw module sector initial boundary at theta
forall f ∈ m, sorted by path do
θ( f ) := theta
r( f ) := R

cc-max
× (cc-max− CC(M , f ))

theta := theta + angle-step
draw f in polar coordinates (θ , r)

end
draw module sector final boundary at theta

end
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Commit-related information
about the selected entity

Selected entity name, path and metric values

Interactive visualization

Settings to create the 
Evolution Radar

Figure 4.2. An example Evolution Radar applied on the core3 module of Azureus

4.1.1 Example

Figure 4.2 shows an example Evolution Radar visualizing the coupling between Azureus’ core3
module (represented as the cyan circle in the center) and all the other modules (represented
as the sectors). The size of the figures is proportional to the number of lines changed while
their colors map the number of commits, using a heat-map from blue (lowest value) to red
(highest value). We see that the ui module (on the top-right part of the radar) is the largest and
most coupled module. The three files marked as 1 in the figure are the ones with the strongest
coupling. They should be further analyzed to identify the most appropriate module to contain
them: core3 or ui. Other modules do not have such a strong coupling, but we see the presence
of some outliers, i.e., files for which the coupling measure is much higher with respect to the
context. The two files marked as 2, belonging to the plugins and pluginsimpl modules, are such
outliers and should also be analyzed and moved in case they belong to the wrong module.

Figure 4.2 also shows the structure of the Evolution Radar tool. In the center the Evolution
Radar has the interactive visualization which is set up using the panel on the right, selecting the
entities (e.g., source code files only or all files), the module in the center and the metrics. When
an entity is selected in the visualization, it is possible to show the commit-related information
about it (author, timestamp, comments, etc.) in the left panel. The tool allows the user to either
consider all the commits or just the ones involved in the coupling. On the bottom part it displays
information about the selected entity, such as its metric values.

4.1.2 Change Coupling Measure

In the Evolution Radar files are placed according to the change coupling they have with the
module in focus. To compute the change coupling we use the following formula:
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CC(M , f ) =max
fi∈M

CC( fi , f ) (4.2)

where CC(M , f ) is the change coupling between the module in focus M and a given file f
and CC( fi , f ) is the coupling between the files fi and f . It is also possible to use other group
operators such as the average or the median. We use the maximum because it points us to the
files with the strongest coupling, i.e., the main causes for the module dependencies.

The value of the coupling between two files is equal to the number of transactions including
both files. While SVN and Store mark co-changing files at commit time as belonging to the same
transaction, in CVS transactions are not recorded and we need to reconstruct them, as described
in Section 3.2.2.

4.1.3 Interaction

The Evolution Radar is implemented as an interactive visualization. It is possible to inspect all
the visualized entities, i.e., files and modules, to see commit-related information such as author,
timestamp, comments, lines added and removed, etc. Moreover, it is possible to see the source
code of selected files. Three important features to perform analyses with the Evolution Radar
are (a) moving through time, (b) tracking and (c) spawning.

Moving through time

The change coupling measure is time-dependent. If we compute it considering the whole history
of the system we can obtain misleading results.

Current version

file1
file2

Year 1 Year 2 Year 3

CC: 7/7
Very Strong CC CC: 2/6 CC: 0/4

No CC!

CC (entire history): 9/17 Strong LC

Figure 4.3. An example of misleading results when considering the entire history of artifacts to
compute the change coupling value: file1 and file2 are not coupled during the last year.

Figure 4.3 shows an example of such a situation. It depicts the history, in terms of commits,
of two files: file1 and file2. The time is on the horizontal axis from left to right and commits are
represented as circles. If we compute the coupling measure according to the entire history we
obtain 9 shared commits out of a total of 17, a high value because the files changed together
more than fifty percent of the time. Although this result is correct, it is misleading since we could
conclude that file1 and file2 are strongly coupled. Actually file1 and file2 were strongly coupled
in the past but they are not coupled at all during the last year of the system.

Since we study change coupling information to detect architectural decay and design issues
in the current version of a system, recent dependencies are more important than old ones. In
other words, if two files were strongly coupled at the beginning of a system, but are not anymore
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in recent times (perhaps due to a reengineering phase), we do not consider them as a potential
problem.

For this reason the Evolution Radar is time-dependent, i.e., it can be computed either con-
sidering the entire history of files or a given time window. When creating the radar, the user
can divide the lifetime of the system into time intervals. For each interval a different radar is
created, and the change coupling is computed with respect to the given time interval.

In each visualization all the files are displayed, even those inserted in the repository after
the considered time interval or removed before. Like this, the theta coordinate of a file does
not change in different radars and the position of the figures, with respect to the angle, is stable
over time. This does not alter the semantic of the visualization, since these files are always at
the boundary of the radar, their change coupling being zero.

The radius coordinate has the same scale in all the radars, i.e., the same distance in different
radars represents the same value of the coupling. This makes it possible to compare radars and
to analyze the evolution of the coupling over time. In our tool implementation the user “moves
through time” by using a slider, which causes the corresponding radar to be displayed. However,
having several radars raises the issue of tracking the same entity across different visualizations,
discussed next.

Tracking

Tracking allows the user to keep track of files over time. When a file is selected for tracking in a
visualization related to a particular time interval, it is highlighted in all the radars (with respect
to all the other time intervals) in which the file exists.

Figure 4.4 shows an example of tracking through four radars, related to four consecutive
time intervals, from January 2004 to December 2005. The highlighting consists in using a yellow
border for the tracked files and in showing a text label with the name of the file (indicated with
arrows in Figure 4.4). It is thus possible to detect files with a strong change coupling in the last
period of time and then analyze the coupling in the past, allowing us to distinguish between
persistent and recent coupling.

Spawning

The spawning feature is aimed at inspecting the change coupling details. Outliers indicate that
the corresponding files have a strong coupling with certain files of the module in focus, but we
ignore which ones.

To uncover this dependency between files we spawn an auxiliary Evolution Radar as shown
in Figure 4.5: The outliers are grouped to form a temporary module Mt represented by a circle
figure. The module in focus (M) is expanded, i.e., a circle figure is created for each file com-
posing it. A new Evolution Radar is then created: The temporary module Mt is placed in the
center of it. The files belonging to the module previously in focus (M) are placed around the
center. The distance from the center is a linear function of the change coupling they have with
the module in the center Mt . For the angle coordinate alphabetical sorting is used. Since all the
files belong to the same module there is only one sector.
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(a) January–June 2004 (b) June–December 2004

(c) January–June 2005 (d) June–December 2005

Figure 4.4. Evolution of the change coupling with the Model module of ArgoUML. The Evolu-
tion Radar keeps track of selected files along time (yellow border).

Figure 4.5. Spawning an auxiliary Evolution Radar
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4.1.4 Discussion

One of the advantages of the Evolution Radar is that it does not visualize the coupling rela-
tionships as edges and therefore does not suffer from overplotting: The radar always remains
intelligible, i.e., it is easy to spot the heavily coupled modules (they are displayed as “spikes”
pointing to the center). It is also easy to spot single files responsible for the coupling (they are
placed close to the center).

The Evolution Radar is a general visualization technique, i.e., it is applicable to any kind
of entity. The only requirement is to define a grouping criterion and a distance metric. The
radar can also be enriched by adding more structural information. A sector can be divided in
sub-sectors to visualize sub-groups, e.g., sub-modules, as proposed by Stasko and Zhang [SZ00].

The main drawback, common to many visualizations, is that it requires a trained eye to
interpret the displayed information.

4.2 Using the Evolution Radar for Retrospective Analysis

We implemented two versions of the Evolution Radar: One is a stand alone tool to analyze sys-
tems developed using CVS or SVN, while the second version is integrated in an IDE environment
to develop Smalltalk code. In this section, we apply the stand alone Evolution Radar tool to
perform retrospective analysis on two open source software systems: ArgoUML and Azureus.1

ArgoUML is a UML modeling tool written in Java, consisting of 1,565 classes and more than
200,000 lines of code. Azureus is a BitTorrent client written in Java, with 4,222 classes and
more than 300,000 lines of code. In the following we present a summary of the analyses of the
systems, giving several examples of our approach.

During the analyses, we use the term strong coupling (or strong dependency) between a file
f and a group of files M when the following two conditions2 hold:

1. CC(M , f ) ≥ 10 i.e., there is at least one file fM of M having a number of shared commits
with f greater or equal than 10.

2. The number of commits shared by f and fM divided by the total number of commits of f
is greater than 0.35, i.e., f is modified more than 35% of the times together with fM .

4.2.1 Azureus

Since Azureus does not have any documentation about its architecture, i.e., an explicit decom-
position of the system in modules, we used the Java package structure to decompose the system.
Throughout the analysis we use the following metric mappings: The size (area) of the figures
representing files maps the number of lines changed and the color heat-map represents the
number of commits. Both metrics are computed relative to the considered time interval.

Getting an overview

The first goal of our analysis is to obtain an initial understanding of the package histories, i.e.,
when they were introduced or removed from the system.

1Available respectively at http://argouml.tigris.org and http://azureus.sourceforge.net
2This definition is valid in the context of the analyzed software systems and its goal is to avoid mentioning the

thresholds all the times.

http://argouml.tigris.org
http://azureus.sourceforge.net
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(a) June 2003–August 2003 (b) August 2003–August 2004

(c) August 2004–August 2005 (d) August 2005–August 2006

Figure 4.6. Evolution Radars of the org.gudy.azureus2.ui package of Azureus

We apply the Evolution Radar with the package org.gudy.azureus2.ui in the center, since it is
one of the packages existing from the first to the last version of the system. Figure 4.6 shows
the result with a time interval of one year.3 Figures with cyan borders represent files that were
removed during the considered time interval. During the first three months (Figure 4.6(a))
org.gudy.azureus2.ui was coupled with org.gudy.azureus2.core (gudy.core from now on), while the
other packages did not exist. In the following year (Figure 4.6(b)) gudy.core was removed,

3The first radar refers to a time interval of only three months because the time intervals are computed backward
starting from the latest version of the system.
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since all the figures have a cyan border and in the following radars there is no activity in this
package. The core of the system became org.gudy.azureus2.core3 coupled with ui (because of the
figures close to the center) and com.aelitis.azureus.core (aelitis.core from now on) with very low
activities (few figures). The plugins were also introduced with a clear separation from the ui,
since the coupling was weak (no figures close to the center). From August 2004 to August 2005
(Figure 4.6(c)) the architecture decayed, as most of the packages were strongly coupled with the
ui. Finally, during the last year (Figure 4.6(d)) the coupling decreased with all the packages, but
in core3 there were still files with a strong dependency with the ui (figures close to the center).

Detailing the dependency between core3 and ui

In Figure 4.6 the two files indicated with the arrows and highlighted with the tracking feature
(yellow border) are GlobalManagerImpl.java and DownloadManagerImpl.java. GlobalManagerImpl is
a singleton responsible of keeping track of the DownloadManager objects that represent down-
loads in progress. They are the most coupled from 2003 to 2004 and from 2005 to 2006, and
they have a strong dependency from 2004 to 2005. This strong and long-lived coupling indicates
a design problem (a code smell), conforming to Martin’s Common Closure Principle [Mar00]:
“classes that change together belong together”. The coupling indicates that the classes are mis-
placed or there are other design issues. We spawn two other radars having these files as the
center to see which parts of the ui package they have dependencies with.

Figure 4.7 shows the radars corresponding to August 2004–2005 and August 2005–2006.
The dependency between GlobalManagerImpl and DownloadManagerImpl and the ui package is
mainly due to the class MyTorrentsView, a God class (defined by Riel as a class that tends to
centralize the intelligence of the system [Rie96]).

(a) August 2004–August 2005 (b) August 2005–August 2006

Figure 4.7. Evolution Radars for GlobalManagerImpl and DownloadManagerImpl

Such information is useful for (1) an analyst, because it points to design shortcomings and for
(2) a developer, because when modifying GlobalManagerImpl or DownloadManagerImpl in core3
she knows that MyTorrentsView is likely to need modifications as well.
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Understanding the roles of modules

With this first series of radars we obtained an overall idea of the dependencies and evolution of
the packages. We still do not have any idea of why there are two core packages and which roles
they have. To obtain this information we select the files with the most intense activities (big and
red) and we display their commit comments, as shown on the left of Figure 4.2. We find out
that core3 has more to do with managing files, download, upload and priorities while aelitis.core
is more related to the network layer (distributed hash tables, TCP and UDP protocols).

In all the radars shown in Figure 4.6 the org.bouncycastle module has very low activity and
coupling. A closer inspection reveals that the mentioned package was imported in the system at
a given moment and never modified later. It implements an external cryptographic library4 used
by the Azureus developers.

Analyzing the core package

As a second step, we want to understand the dependencies of aelitis.core with the rest of the
system and we want to detect which are the files responsible for these dependencies. We create
a radar for every six months of the system’s history. We start the study from the most recent one,
since we are interested in problems in the current version of the system. Using a relatively short
time interval (six months) ensures that the coupling is due to recent changes and is not biased
by commits far in the past.

Figure 4.8 shows the radar of aelitis.core from February to August 2006. Two packages are
strongly coupled with aelitis.core: core3 and com.aelitis.azureus.plugins. Comparing the radar
with the static dependencies (e.g., invocations and inheritances) of aelitis.core extracted from the
source code, we see that:

• The module with the strongest static dependency is core3. In fact, the strength of the
dependency between packages, measured by the total number of dependencies between
the contained classes, is one order of magnitude stronger for core3 than for any other
module. However, when we look at the radar we are surprised to see that the module with
the strongest coupling is a different one: com.aelitis.azureus.plugins.

• Most of the static dependency with core3 comes from the sub-package util, responsible for
45% of the dependencies between the two packages. However, the radar shows that util
is less coupled than its sibling sub-packages peer and download. The same holds also in
the past: In the radars referring to previous time intervals util is always less coupled than
download and peer.

These observations demonstrate that change coupling is an implicit dependency. It comple-
ments static analysis, but it can only be inferred from the evolution of the system.

Figure 4.8 shows that the two classes with the strongest dependencies are DHTPlugin in the
plugin package and PEPeerControlImpl in the core3 package. Using the tracking feature of the
Evolution Radar we found out that, in the previous year, these two classes were outliers, i.e.,
they had a coupling much stronger than all the other classes in the package. To see the details of
the dependency for DHTPlugin we spawn a new radar having the class as the center. The situation
is different from the one shown in Figure 4.7 for DownloadManagerImpl and GlobalManagerImpl.
For these two classes the coupling was mainly due to one single class (MyTorrentsView), while

4The Bouncy Castle library is available at http://www.bouncycastle.org

http://www.bouncycastle.org
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Figure 4.8. Evolution Radar for Azureus’s aelitis.core package and details of the coupling be-
tween this package and the class DHTPlugin, February – August 2006

for DHTPlugin it is scattered among many files. This means that the file DHTPlugin.java was often
changed together with many files in the aelitis.core package. This is a symptom of a misplaced
file. Looking at the source code of the ten most coupled files, we discovered that all of them
use DHTPlugin or its subclasses, meaning that core classes use plugin classes. Moreover, the
class with the strongest coupling is a test case using DHTPlugin. Therefore, a modification in the
plugin package can break a test in the core package.

This scenario repeats itself for the most coupled file in core3: The file PEPeerControlImpl.java is
coupled with several files in aelitis.core. For the discussed reasons, DHTPlugin, PEPeerControlImpl,
and their subclasses should be moved to aelitis.core.

Detecting renaming

The Evolution Radar can keep track of files, even if they are renamed or their code is moved to
another place. This is possible because files are positioned according not only to their names,
but also to their relationship with the center package. When a file fold is renamed to fnew, the
relationship fold used to have with the package in the center, will hold for fnew (note that CVS
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(a) August 2003 – February 2004 (b) February – August 2004

(c) February – August 2006

Figure 4.9. Evolution Radars for the core3 package of Azureus. They are helpful to detect the
transition from the old MainWindow.java to the new one.

and SVN record it as a removal of fold and an addition of fnew). Looking at similar couplings and
removed files, we can detect such situations.

Figure 4.9 shows three Evolution Radars having the core3 package in the center. From Febru-
ary to August 2006 core3 had dependencies with the plugins packages and aelitis.core, and a
strong coupling with the ui. In the ui there are three outliers: MyTorrentsView.java (already de-
tected and discussed), TableView.java (the superclass of MyTorrentView, a God class as well) and
MainWindow.java. Figure 4.9(a) shows the radar corresponding to August 2003 – February 2004.
In the ui there are again three outliers: MyTorrentsView.java, ConfigView.java and MainWindow.java.
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This MainWindow.java is a different file from the one in Figure 4.9(c) and, in fact, it is not high-
lighted by the tracking feature: The two MainWindow classes belong to different sub-packages.
However, since they have the same type of coupling with core3, they can represent the same
logical entity. Figure 4.9(b) shows the transition between the old and the new MainWindow.java.
They both have a strong coupling with core3 and the old one is removed, since it has a cyan
border.

4.2.2 ArgoUML

We inferred ArgoUML’s system decomposition into modules from its web site. We omitted the
modules for which the documentation says “They are all insignificant enough not to be men-
tioned when listing dependencies” and focus our analysis on the three largest modules: Model,
Explorer and Diagram. From the documentation we know that Model is the central module that
all the others rely and depend on. Explorer and Diagram do not depend on each other.

We use the same analysis approach as for Azureus: We create a radar for every six months of
the system’s history. As metric we use the change coupling for both the position and the color of
the figures. The size is proportional to the total number of lines modified in the considered time
interval.

(a) January – June 2005 (b) July – December 2005

Figure 4.10. Evolution Radars applied to the Explorer module of ArgoUML

The Explorer module

Figure 4.10(b) shows the Evolution Radar for the last six months of history of the Explorer mod-
ule. This module is much more coupled with Diagram than with Model, although the documen-
tation states that the dependency is with Model and not with Diagram. The most coupled files in
Diagram are FigActionState.java, FigAssociationEnd.java and FigAssociation.java. Using the tracking
feature, we discover that the coupling with these files is recent: In the radar for the previous six
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months (Figure 4.10(a)) they are not close to the center. This implies that the dependency is
due to recent changes only. To inspect the change coupling details, we spawn an auxiliary radar:
We group the three files and generate another radar centered on them, shown in Figure 4.11.

Figure 4.11. Details of the change coupling between ArgoUML’s Explorer module and the
classes FigActionState, FigAssociationEnd and FigAssociation

We now see that the dependency is mainly due to ExplorerTree.java. The high-level depen-
dency between two modules is thus reduced to a dependency between four files. These four files
represent a problem in the system, because modifying one of them may break the others, and
since they belong to different modules, it is easy to forget this hidden dependency.

The visualization in Figure 4.10(b) shows that the file GeneratorJava.java is an outlier, since
its coupling is much stronger with respect to all the other files in the same module (CodeGenera-
tion). By spawning a group composed of GeneratorJava.java we obtain a visualization very similar
to Figure 4.11, in which the main responsible for the dependency is again ExplorerTree.java.
Reading the code reveals that the ExplorerTree class is responsible for managing mouse listeners
and generating names for figures. This explains the dependencies with FigActionState, FigAsso-
ciationEnd and FigAssociation in the Diagram module, but does not explain the dependency with
GeneratorJava. The past (see Figure 4.10(a) and Figure 4.12(a)) reveals that GeneratorJava.java
is an outlier since January 2003. This long-lasting dependency indicates design problems. A
further inspection is required for the ExplorerTree class in the Explorer module, since it is the main
responsible for the coupling with the modules Diagram and CodeGeneration.

Detecting a move operation

The radars in Figure 4.10(b) and Figure 4.10(a) show that during 2005 the file NSUMLMod-
elFacade.java had the strongest coupling—in the Model module—with Explorer (module in the
center). Going six months back in time, from June to December 2004 (see Figure 4.12(a)), we
see that the coupling with NSUMLModelFacade.java was weak, while there was a strong depen-
dency with ModelFacade.java. This file was also heavily modified during that time interval, given
its dimension with respect to the other figures (the area is proportional to the total number
of lines modified). ModelFacade.java was also strongly coupled with the Diagram module (see
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(a) Explorer module (b) Diagram module

Figure 4.12. Evolution Radars of the Explorer and Diagram modules of ArgoUML from June to
December 2004

Figure 4.12(b)). By looking at its source code we find that it was a God class [Rie96] with thou-
sands of lines of codes, 444 public and 9 private methods, all static. The ModelFacade class is not
present in the other radars (Figure 4.10(b) and Figure 4.10(a)) because it was removed from
the system the 30th of January 2005. By looking at the source code of the most coupled file in
these two radars, i.e., NSUMLModelFacade.java, we discover that it is also a very large class with
317 public methods. Moreover, we find out that 292 of these methods have the same signature
of methods in the ModelFacade class, where 75% of the code is duplicated. The only difference
is that NSUMLModelFacade’s methods are not static. Also, it contains only two attributes, while
ModelFacade has 114 attributes. ModelFacade represented a problem in the system and thus was
removed. Since most of the methods were copied to NSUMLModelFacade, the problem was just
relocated.

This example shows how historical data reveals problems, that are difficult to detect looking
at one version of the system only. Knowing the evolution of ModelFacade helped us to understand
the role of NSUMLModelFacade in the current version of the system.

Identifying system phases

As a final scenario, we analyze the change coupling evolution of the Explorer module with all the
others. From Figure 4.12(a), we see that from June to December 2004 the couplings were very
strong. Then, from January 2005 to June 2005 (Figure 4.10(a)), they heavily decreased. This
suggests that in the previous period the module was restructured and its quality was improved,
since in the next time interval the coupling with the other modules was weak. The effort spent
for the restructuring can be seen from the size of the figures, representing the total number of
lines changed: In the radar relative to June – December 2004 (Figure 4.12(a)) the figures are
bigger than in the radar relative to January – June 2005 (Figure 4.10(a)). At the end of the
restructuring phase, the class ModelFacade was removed. From June to December 2005 (see
Figure 4.10(b)) the coupling increased again. This can be related to a new restructuring phase.
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4.2.3 Discussion

We applied the Evolution Radar on two open source software systems, showing that it helps in
answering questions about the evolution of a system that are useful to developers, analysts, and
project managers. The Evolution Radar offers a visual way to assess the files that might change
in the future based on the prediction offered by change coupling. Due to the fine-grained level
of the visualization, files can be inspected individually. For example in Azureus we discovered
that a change in the class GlobalManagerImpl or DownloadManagerImpl in the core3 package, is
likely to require a change in the class MyTorrentsView in the ui package.

The Evolution Radar can be used to (1) understand the overall structure of the system in
terms of module dependencies, (2) examine the structure of these dependencies at the file gran-
ularity level, and (3) get an insight of the impact of changes on a module over other modules.
This knowledge will help them in the following activities:

• Locating design issues such as God classes or files with a strong and long-lived depen-
dency with a module. Examples of design issues detected in ArgoUML include the classes
GeneratorJava in CodeGeneration and ExplorerTree in Explorer. GeneratorJava has a persistent
coupling with the Explorer module, while ExplorerTree is coupled with both the CodeGener-
ation and Diagram modules. In Azureus we detected God classes (MyTorrentsView and its
superclass TableView) having strong dependencies with files belonging to different pack-
ages.

• Deciding whether certain files should be moved to other modules. In Azureus’s case we
discussed why DHTPlugin should be moved to the aelitis.core package.

• Understanding the evolution of the change coupling among modules. This activity can
reveal phases in the history of the system, such as restructuring phases. In ArgoUML we
identified different phases—with respect to the module Explorer—where two of them are
likely to be restructuring phases. The evolution of the dependencies, together with the
information about the removed files, is also helpful to see when modules were introduced
or removed from the system. We used this information to obtain an overall idea of Azureus’
structure in terms of packages.

• Detecting when artifacts have been renamed or moved. For example, we discovered that
in Azureus the class MainWindow was moved between packages. In ArgoUML we found
out that most of the code of the ModelFacade class was moved to NSUMLModelFacade.

4.3 Supporting Maintenance with the Radar

As a second application of the Evolution Radar, we integrated it in an IDE, to support main-
tenance activities. In this case, the radar visualization is part of the code browser, to allow
a developer going directly from the visualization to the code and back. The IDE we enriched
with the Evolution Radar is the System Browser [RBJ97] of the Cincom Smalltalk Visualworks
distribution.5

In Cincom Smalltalk the code is organized in bundles: A bundle can contain packages and
bundles, and packages contain classes. To render the Evolution Radar, we consider the system
decomposition in packages, “flattening” the bundles hierarchy. We consider packages instead of

5Available at http://www.cincomsmalltalk.com

http://www.cincomsmalltalk.com
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bundles because the latter cannot contain classes, but only packages. To compute the change
coupling between two classes versioned with Store (the versioning system for Cincom Smalltalk),
we consider all the versions of the classes corresponding to the considered time interval, and we
count how many times they changed together, i.e., how often they were committed in the same
transaction. This number of co-changes is the change coupling between the two classes in the
considered time interval.

4.3.1 Integration in the IDE

Figure 4.13 depicts the enriched System Browser IDE. In the top part there are four panels used
to browse the code. They present respectively packages, classes, protocols6 and methods. In
the bottom part there are multiple tabbed views that present details or allow the editing of the
element that is selected on top. They include a code editor, a code analysis tool, a comment
editor, etc.. We extended the IDE with a new tabbed view for the Evolution Radar.

Class
browser

Protocol
browser

Method
browser

Current project
package list

Main Evolution
Radar Visualization

Secondary Evolution
Radar Visualization

Tabs
Information fields

Time slider

Package
browser

Context menu

Figure 4.13. The Evolution Radar integrated in the System Browser IDE. It shows the change
coupling between the CodeCityGlyphs module and the rest of CodeCity’s modules.

The Evolution Radar view is composed of three panels (cf. Figure 4.13): The list of available
packages in the current project, the main radar visualization and the secondary visualization in
which a second radar can be spawned from a selection in the main one. The Evolution Radar
panels include the information fields that show information about the entity under the mouse
pointer and the time slider which supports the visual navigation through time.

6Protocols are a Smalltalk-specific way of grouping methods in a class.
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The integrated version of the Evolution Radar adds the following interaction modes:

• When clicking on a figure, the browser in the top part displays the corresponding class or
package, allowing the developer to immediately see and, in case, modify the source code.
Moreover, through the context menu (see Figure 4.13), it is possible to directly move,
modify and apply refactorings on the corresponding class.

• When selecting a figure or a group of figures, it is possible to: (1) Spawn a radar in the
secondary view, (2) spawn a window with a code browser, (3) track the entity over time,
and (4) read the commit comments corresponding to all the commits or just to the ones
involved in the coupling.

To assess the usefulness of the visualization against the same coupling information presented
in a list, we added another tabbed view to the IDE, called “Coupling List View”. In this view,
instead of the main and secondary evolution radar visualizations, there is the list of classes
coupled with the package selected in the package list (bottom left part of Figure 4.13), sorted
according to the change coupling value.

This implementation of the Evolution Radar is designed to support Smalltalk developers in
three types of activity: System restructuring, re-documentation and change impact estimation.

Restructuring

Having the Evolution Radar integrated into the IDE makes it easy to inspect the classes that are
coupled and—if they are in the wrong place—to restructure the system, i.e., move the classes to
the appropriate package. This operation can be performed directly from the context menu in the
Evolution Radar visualization (see Figure 4.13).

Re-documentation

The developer uses the radar to analyze the coupling of a package with the rest of the system
and, by looking at the commit comments and the source code, he can discover the reasons
for the coupling. Then, the developer can annotate this information directly on the involved
classes and/or packages by writing a comment into the “Comment” tab (see the list of tabs in
Figure 4.13). These comments are part of the system code and get versioned as every other
entity.

Change impact estimation

When two classes are logically coupled, they are likely to change together in the future [SW08].
This information can be useful to a developer who is about to make a change to a class in the
system because it can support him in estimating the impact of the change.

The developer can select the class (or classes) he needs to modify and see which are the
classes that are coupled with it. If there is no coupling (no figures close to the center), the
developer can go on with the modification. If the class is coupled with few other classes, he can
obtain more insight by looking at their source code and reading the comments written in the re-
documentation phase. If the class is coupled with many other classes in the system, the developer
has to find out whether these couplings are due to large commits or whether the class is affected
by design issues. To do so, he can exploit the information gained in the re-documentation phase
or he can look at the commit comments accessible directly in the radar.
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The developer can access the “change impact” functionality using the radio button in the
bottom left corner of the tool (see Figure 4.13). Whenever he selects a package, a class or
multiple classes in the code browser (in the upper part), an Evolution Radar having the selection
in the center is generated and rendered on the fly.

4.3.2 Experimental Evaluation

To experiment the IDE version of the Evolution Radar, we asked a developer to use it, and report
on his experience. The developer is Richard Wettel, a PhD student in the University of Lugano.
The system to which he applied the Evolution Radar is called CodeCity,7 a software analysis tool
that visualizes software systems as interactive 3D cities. At the time of the experiment (August
2008), CodeCity was composed of 478 classes and had about 15,000 lines of code. It was devel-
oped since April 2006 mostly by a single developer, and occasionally by two other developers, in
the context of pair-programming sessions. The following, in italic, is a slightly adapted extract
of his experience report, organized according to the performed maintenance activities.

Re-documentation phase

We started by analyzing coupled modules (i.e., packages in Smalltalk), looking for coupling to the
core packages, in our case the ones dealing with the glyphs, layouts, and mappings. Figure 4.13
shows the coupling to the glyphs module, represented by the circle in the middle of the left visual-
ization panel, which seems to be distributed in five levels (i.e., five concentrical layers besides the
external one which shows the uncoupled classes). Whenever we needed to see which are the entities
inside the module in the middle coupled with a particular class, we spawned a radar from the selec-
tion (the right visualization panel in Figure 4.13) and observed these in isolation. Selecting a class
circle triggers its selection also in the code editor. Integrating the information about change coupling
with the code and with versioning logs allowed us to reason about the system’s evolution.

Overall, we were able to determine the cause of the unexpected change couplings with the help of
the context menu option, which allows looking at the log entries of the system versions which pro-
duced the coupling. The causes were either larger commits incorporating several unrelated changes
to the system or in one case the system was massively restructured. While we did not find any cou-
pling that needed refactoring, all of them were accurately detected. We finally added all information
we found to the comments of each analyzed class.

Change impact estimation phase

The second task we performed was assessing the impact of change of the AbstractLayout class (the
root of the layout hierarchy), since we needed to reengineer the way the layouts communicate with
the glyphs and mappings. To do so, we enabled the “change impact” functionality through the radio
button, and then selected the AbstractLayout class in the code browser, which automatically gener-
ated the corresponding radars. In Figure 4.14, we see the evolution of the change coupling to the
AbstractLayout class, which provides an accurate representation of the way the entire system evolved.
In a first time period (top left) classes are being changed (i.e., large circles) in many packages being
developed in parallel and logically coupled among each other. The following period is very unfo-
cused, but with smaller changes (i.e., small fixes). The third period is one of coupling with classes

7CodeCity is available at http://codecity.inf.usi.ch

http://codecity.inf.usi.ch
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Figure 4.14. The change coupling evolution of the class AbstractGlyph

from almost all the packages, while the last period shows coupling only to few new classes all defined
in the CodeCityScripting package. Reading the comments written in the re-documentation phase, we
knew that these classes of CodeCityScripting—which implement a basic scripting language for 3D
visualizations—are coupled with many core classes (including AbstractLayout) and the coupling is
justified: The core classes changed together with the scripting classes in order to make the system
compatible with the new scripting language. Since the coupling was justified, we knew that we could
proceed with reengineering the layouts, but being careful to comply with the new scripting language,
not to break the dependency with the CodeCityScripting package.

Comments

We were asked to try the list view and compare it with the radar view. In our experience, the list
view was useful to easily spot the most coupled class with a given package. However, with the list we
had difficulties in understanding the coupling at the system level and to see how it was distributed
among packages and classes. We found it useful to be able to navigate in time using the radar, while
keeping track of certain classes. With the list view, we did not succeed in navigating in time, because
it was difficult to keep track and compare the values of the change coupling for a class over different
time intervals.
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4.3.3 Lessons Learned

Although we do not consider this experiment a full-fledged user study, it points to the fact that
the Evolution Radar can be successfully used to support maintenance activities. The visualization
itself, without the interactive features (moving through time, spawning, tracking, inspecting), is
not sufficient to perform the tasks, as the developer continuously used them during the mainte-
nance activities. In particular, the possibility to read the commit comments seems crucial.

Overall, while the first implementation of the radar as a stand alone tool is helpful to perform
retrospective analysis, only through the integration in a development environment the radar
exploits its full potential, as an IDE enhancement.

4.4 Summary

We presented the Evolution Radar, an approach to integrate and visualize module-level and
file-level change coupling information, extracted from our evolutionary meta-model Mevo. The
Evolution Radar is useful to answer questions about the evolution of the system, the impact
of changes at different levels of abstraction and the need for system restructuring. The main
benefits of the technique are:

1. Integration. The Evolution Radar shows change coupling information at different levels
of abstraction, i.e., files and modules, in a single visualization. This makes it possible
to understand the dependency among modules and—using the spawning feature of our
tool—reduce it to a small set of strongly coupled files responsible for the dependency.

2. Control of time. Considering the history of change coupling is helpful to uncover hidden
dependencies between software artifacts. However, summarizing the information about
the entire history in a single visualization may lead to imprecise results. Two artifacts that
were strongly coupled in the past but not recently may appear as coupled. The Evolution
Radar solves this problem by dividing the system lifetime in settable time intervals and
by rendering one radar per interval. A slider is used to “move through time”. A tracking
feature is provided to keep track of the same files in different visualizations.

We illustrated our approach on two large and long-lived open source software systems: Ar-
goUML and Azureus. We provided example scenarios of how to use the Evolution Radar to
understand module dependencies and impact of changes at both file and module levels. We
found design issues such as God classes, misplaced files and module dependencies not men-
tioned in the documentation. We also reduced these dependencies to coupling between small
sets of files. These files should be considered for reengineering to decrease the coupling at the
module level. The control of time allowed us to understand the overall evolution of the systems
(when modules were introduced/removed) and to identify phases in their histories.

We showed how the tight integration of the Evolution Radar with an IDE can support main-
tenance activities like restructuring, re-documentation and change impact estimation. We de-
scribed how this support works, by presenting an experience report of a developer using the
Evolution Radar inside the Smalltalk System Browser IDE.

The focus of this chapter was the evolution of software artifacts. The next chapter focuses
on the evolution of software defects.



Chapter 5

Analyzing the Evolution of Software
Defects

Bug tracking systems play an important role in software development [MFH02; RdMF02]. They
are used by developers, quality assurance people, testers, and end users to provide feedback on
the system. This feedback can be reported as an incorrect or anomalous situation or as a request
for enhancements. Bugs, often considered as an unwanted “side dish” of the evolution phe-
nomenon, in fact represent a valuable source of information that can lead to interesting insights
about a system, that would be hard or impossible to obtain relying exclusively on structural
information.

When presenting our Mevo meta-model (cf. Section 3.1.2), we discussed the importance of
modeling bugs as first class entities that can change and evolve over time. We showed, using
Mozilla as an example, that bugs indeed live long (more than 50% of Mozilla bugs lived more
than one year, cf. Figure 3.3), and thus in Mevo we model their histories, i.e., the sequence of
states that they traverse. In this chapter we present a visual approach which exploits such his-
torical information about software defects, as captured in our meta-model. As discussed when
surveying approaches for bug analysis (cf. Section 2.5.1) and software evolution visualization
(cf. Section 2.3.2), researchers proposed a number of techniques that use bug data, but they
focus on the structural evolution of systems and do not consider bugs as evolving entities.

Our approach consists in two interactive visualizations that support the understanding of
bugs at two different levels of granularity:

1. System Radiography. This view renders bug information at the system level and provides
indications about which parts of the system are affected by what kind of bugs at which
point in time. It is a high-level indicator of the system health and serves as a basis for
reverse engineering activities.

2. Bug Watch. This visualization provides information about a specific bug and is helpful to
understand the various phases that it traversed. The view supports the characterization of
bugs and the identification of the most critical ones.

The visualizations are complementary to established structural visualizations and other re-
verse engineering techniques.

89
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Structure of the chapter. We present our technique for visualizing software defects in Sec-
tion 5.1, discussing also the constraints of dealing with a large bug database. In Section 5.2 we
apply our approach on Mozilla, showing how to perform bug analysis in the large and in the
small with our tool. In Section 5.3 we discuss the benefits and limitations of our approach, and
we conclude the chapter in Section 5.4.

5.1 Visualizing a Bug Database

Table 5.1 reports some statistics about the bug databases of three open-source software projects:
ArgoUML, Eclipse and Mozilla.

Table 5.1. Statistics about the bug databases of ArgoUML, Eclipse and Mozilla

ArgoUML Eclipse Mozilla
All

Feb 2000–Apr 2009 Oct 2001–Jul 2009 Sep 1998–April 2003
All

Number of bugs 4,280 120,531 255,302 380,025
Activities per bug 7.1 7.8 10.6 9.7

Bug lifetime
< 1 day 995 23.7% 30,974 25.7% 28,236 11.1% 60,205 15.8%
1 day – 1 week 673 16.1% 25,787 21.4% 15,420 6.0% 41,880 11.0%
1 week – 1 month 641 15.2% 21,008 17.4% 19,250 7.5% 40,899 10.8%
1 – 6 months 734 17.5% 20,747 17.2% 46,644 18.3% 68,125 17.9%
6 months – 1 year 376 9.0% 7,004 5.8% 26,909 10.5% 34,289 9.0%
1 – 2 years 372 8.9% 6,517 5.4% 37,453 14.7% 44,342 11.7%
> 2 years 401 9.6% 8,494 7.1% 81,390 31.9% 90,285 23.8%
> 1 month 1,883 44.9% 42,762 35.5% 192,396 75.4% 237,041 62.4%
> 6 months 1,149 27.4% 22,015 18.3% 145,752 57.1% 168,916 44.5%

The table shows that the size of bug databases can be large, leading to a number of con-
straints for visualizing them. In particular, three properties of bug databases have to be consid-
ered:

1. Bug number: A bug database can contain more than 100,000 bug reports (Eclipse and
Mozilla), therefore the visualizations have to scale.

2. Bug liveliness: In all the considered software projects more than 18% of bugs last more
than 6 months (time between the reporting and the last registered activity) with an av-
erage number of activities ranging from 7.1 (ArgoUML) to 10.6 (Mozilla). Thus, the vi-
sualizations should not only display individual bugs, but also complementary information
such as their activities and status histories.

3. Bug importance: Expressed with severity and priority, bugs have different impact and im-
portance, and the visualization must help to convey this distinction.

5.1.1 The System Radiography View

The goal of the System Radiography view is to support the analysis of a bug database as a whole.
We want to study how the open bugs (not fixed yet) are distributed in the system and over time.
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Figure 5.1. The principles of the System Radiography visualization

Visualization Principles

Figure 5.1 shows the principles of the System Radiography view. The evolving system is dis-
played using a matrix-based representation. Each row of the matrix represents a system com-
ponent, and each group of rows, i.e., components, represents a system product. We obtain this
hierarchical decomposition of the system in Product::Component from the bug database itself,
since each bug affects a particular component belonging to a particular product. The columns
represent time from left to right. Each column corresponds to a parametrizable interval of time.

The y position of each cell represents a Product::Component pair, while the x position rep-
resents an interval of time. The color of the cells maps the number of bugs affecting the y
component during the x time interval, where x and y are the position of the cell. We use a gray
scale: The darker the color, the larger the number of bugs.

A bug, at any point in time (of its life), is characterized by a status. Therefore, it does
not make sense to count the number of bugs during a time interval without considering their
statuses. For this reason, the color of the cells represents the number of bugs with a given status
(or set of statuses) during the considered time interval. This allows us to see the distribution
of the bugs in the system and over time with respect to their status: For example “open” bugs
(bugs with new, assigned or reopened status), “solved” bugs (resolved, verified or closed), or only
new or reopened bugs, etc. In our tool implementation other filters can be used: For example, we
can use the severity filter to count the blocker and critical bugs only.

Once the matrix is created, we apply a sorting algorithm to its rows before displaying it. The
goal is to sort, for each product, its components according to the similarity of their histories,
i.e., the number of bugs for every time interval. Given a product p and two components c1, c2,
corresponding to the matrix rows r1, r2 of size n (number of columns), the similarity between
the components is defined as the Euclidian distance of the points r1, r2 in a n-dimensional space,
as defined by Equation 5.1.

d(r1, r2) =

s

n
∑

i=1

�

r1(i)− r2(i)
�2 (5.1)

The value of r j(i) is the number of bugs with a given status (and after the filtering) of the j-th
component within the i-th time interval. After sorting, we obtain a matrix in which the products
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are alphabetically sorted and the components within each product are sorted according to the
defined similarity. This sorting allows us to detect groups of components that were affected by a
large number of bugs in the same time window.

Time interval
Product::Component

List of bugs

Most frequent words

Toolbar

3

4

5

6

2

1

System radiography view

7

Figure 5.2. A System Radiography of Eclipse from October 2001 to July 2009. Only bugs with
new, assigned or reopened statuses are considered.

Figure 5.2 shows our tool visualizing a System Radiography of Eclipse from October 2001 to
July 2009, where open bugs only are considered. The time interval used is five days, meaning
that each column of the matrix represents five days of time. The main window of the tool is
divided in a visualization part on the left (marked as “1”), containing the actual System Radio-
graphy, and an information part on the right. This part displays the information concerning the
matrix cell under the pointer: The time interval (3), the product::component pair (4), the list
of bugs affecting that component during that time interval1 (5) and the most frequent terms

1Only the bugs with the considered statuses and severities are listed.
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extracted from all bug activities and long descriptions (6). The tool provides also a toolbar
(marked as “2” in Figure 5.2) to perform a number of actions such as importing the data from
Churrasco, creating views, zooming and configuring visualization parameters.

The same bug can be counted in different cells of the same row. For example, if the bug 344
was in the New status for nine days, and the time interval is three days, then the bug is counted
in three cells, as shown in Figure 5.3. On the other hand, since the product and component
fields of a bug can have just one value, the same bug cannot be counted in different cells of the
same column.

Bug 343
reported

Bug 344
closed

Bug 344
reported

Bug 346
reported

Bug 345
reported

2 open
bugs

3 open
bugs

4 open
bugs

3 open
bugs

1 open
bugs

Bug 345
closed

Bug 346
closed

0 open
bugs

Time

Time interval
3 days

Figure 5.3. Counting open bugs over time in a row of the System Radiography view

5.1.2 The Bug Watch View

With the System Radiography view we obtain a big picture of the system from the bug per-
spective and we can detect the critical components. The purpose of the Bug Watch view is to
ease the analysis of single bugs. Our goals are to characterize the bugs affecting a given set of
components during a given time interval and to detect the most critical bugs. Our underlying
assumption is that the criticality of a bug does not depend only on its severity and priority, but
also on its life cycle. For example, a bug reopened several times indicates a problem which is
hard to solve, as several attempts to fix the bug failed.

For this type of analysis we need a visualization which fulfills the following requirements:

• Considering time. The visualization has to be time-based in order to show the life cycle
history of a bug.

• Considering severity and priority. These bug properties are important to detect critical bugs.

Visualization Principles

Figure 5.4 shows a Bug Watch visualization of a Mozilla bug, rendered in our Bug’s Life tool.
The visualization technique uses a watch metaphor to represent time: The initial timestamp is
mapped to 00:00 on the watch, the final timestamp is mapped to 11:59. The figure is composed
of three layers:
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Figure 5.4. A Bug Watch Figure visualizing Bug 5119 of Mozilla between Oct 19, 1999 and
Oct 16, 2001

1. The Status layer represents the bug life cycle. We visualize each status the bug passed
through as a sector, using the following color schema (also used in Figure 3.6): Green
colors represent statuses in which the bug is considered fixed (i.e., resolved, verified or
closed), while red colors represent statuses in which the bug has to be fixed (i.e., new,
assigned or reopened). The position and the size of each sector map respectively the initial
timestamp and the duration of the corresponding status.

2. The Activity layer visualizes modifications of any bug property. We represent each activity
as a black bar and we position it according to when the modification happened. Since an
activity is an event, its visual representation has a fixed size. Wider bars denote several
activities in the same time interval.

3. The Severity/Priority layer depicts information about the severity and the priority of a bug.
Dark colors denote high priority and blocker or critical severity, while bright colors indicate
low priority and minor, trivial or enhancement severity.

We can map different bug metrics on the radius of a Bug Watch. We usually choose the
number of statuses in the considered time interval, which also corresponds to the number of
sectors. This, besides easing the detection of bugs with an intense life cycle, also has the benefit
of making the statuses more readable, as bugs with many statuses are represented with larger
figures. Figure 5.5 shows an example of this: Statuses are always readable, as long as they do
not last for a very short time.
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Figure 5.5. A Bug Watch visualization of the bugs affecting the JDT product of Eclipse. The
reference time interval is 20/2/2003 – 5/25/2004. We represent each bug as a Bug Watch
Figure.

One problem of the Bug Watch visualization is that it is not possible to distinguish between
different activities, since they are all visualized in the same way. We opted against the use
of different colors for different activities because this would make the figure too complex to
interpret. A second problem arises when there are statuses which last for short periods of time.
They are represented as narrow sectors, which are difficult to distinguish, especially in zoomed
out views as for example in Figure 5.6. To overcome these issues, we provided our tool with four
panels showing complementary information about the bug in focus (cf. Figure 5.4): (1) The id,
priority and severity of the bug, (2) the description of the problem, (3) the life cycle, i.e., the
sequence of statuses the bug traversed and (4) the activity history, i.e., the list of all activities
performed on the bug.

Considering the high number of bugs, the question is which bugs to visualize using the
Bug Watch view. The starting point is usually the previously presented System Radiography
visualization: We select an area in the System Radiography that our tool converts in a set of
bugs and in a time window. To create the set of bugs, we consider all the matrix cells covered
by the rectangular selection, and we add the corresponding bugs. The selection—depending on
its height—can cover one or several system components. The time window corresponds to the
first (beginning) and last (end) matrix columns covered by the selection. We then visualize the
selected bugs by means of Bug Watch figures, all with the same reference time window.
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Figure 5.6. Clustering bugs according to the similarity of their life cycles. The clustering eases
comparing bugs and spotting “exceptional” bugs.

Figure 5.5 shows a Bug Watch view applied to the rectangle annotated with “7” in Figure 5.2.
The area covers the Networking component from November 2002 to April 2003. However, given
the large amount of visualized bugs, it is difficult to identify trends in bug histories and to detect
peculiar bugs. To address this issue, we devised a clustering technique that works as follows:
Bugs having similar life cycles (in the considered time interval) are grouped and placed in the
same box; Bugs with a diverse life cycle form single-element boxes. The algorithm then places
the boxes in a way that similar boxes, with respect to the similarity of the contained bugs, stay
close to each other (cf. Figure 5.6). This clustering technique facilitates the characterization of
bugs, according to their life cycles, and the identification of “exceptional” bugs.
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5.2 Experiments

The Bug’s Life tool can visualize all the models available in the Churrasco framework, as long as
they have bug data, i.e., the modeled software project uses a bug tracking system. To assess the
usefulness of the presented visualizations, we apply them to the bug database of Mozilla from
June 1999 to April 2003, a large dataset consisting of more than 250,000 bugs and 2,700,000
bug activities. We selected this time window for the following reasons: In June 1999—the
beginning—Bugzilla was introduced for the first time, and in April 2003—the end—the Mozilla
Organization planned to focus the development effort on the new standalone applications (e.g.,
Firefox and Thunderbird) rather than the Mozilla framework, adding new features and enhance-
ments to the standalone applications only.2 Therefore, from June 1999 to April 2003, we have a
large dataset focusing on a single application.

Table 5.2. The properties of the five areas highlighted in Figure 5.7

Label Product Components Time interval Avg. bugs
per 3 days

#bugs

1 Browser Bookmarks, Layout:Form-Controls, Lay-
out:Tables, Plugins, XP-Apps:GUI, Event
Handling

May 2001–Jan 2003 215 5,570

2 Browser Browser-general, Layout, XP Toolkit/Wid-
get, Editor Core, Networking, XP Apps, OJI

Jun 1999–Apr 2003 291 24,407

3 MailNews Networking IMAP, Account Manager May 2001–Mar 2003 145 874
4 MailNews Address Book, Composition, Mail Back

End, Mail Window Front End
Aug 1999–Apr 2003 408 9,421

5 Tech Evang. Europe West, US General Oct 2000–Apr 2003 250 1,871

5.2.1 Analysis in the Large

Figure 5.7 shows Bug’s Life visualizing a System Radiography of Mozilla, where we consider
open bugs only. The time interval used is three days, meaning that each column of the matrix
represents three days of time.

Our goal with this first visualization is to understand where and when the open bugs are
concentrated. In Figure 5.7 we see that Browser is the largest product—in terms of number of
components—and the most affected by open bugs. It has a large number of dark rows, i.e.,
components affected by many bugs.

We identified and annotated five system areas with the highest density of open bugs, de-
scribed in Table 5.2. These areas contain system components which were affected by a large
number of open bugs for a long period of time. The average number of bugs per basic time in-
terval (three days) varies from 145 to 408, while the total amount of different bugs varies from
874 to 24,407. The shortest time window is 22 months, the longest 46 months. Such amounts
and densities of bugs with such a persistency over time are bad symptoms, which indicate that
the components should be reengineered to decrease the number of introduced bugs.

The second goal of our analysis in the large is to understand where and when the open and
most severe bugs are located. To do so, we generate a second System Radiography by select-
ing the bugs with blocker or critical severity only. Figure 5.8 shows an extract of the obtained

2See the Mozilla roadmap at http://www-archive.mozilla.org/roadmap/roadmap-02-Apr-2003.html

http://www-archive.mozilla.org/roadmap/roadmap-02-Apr-2003.html
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Figure 5.7. A System Radiography of Mozilla from June 1999 to April 2003. We consider bugs
with new, assigned or reopened statuses only.
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Figure 5.8. An extract of a System Radiography of Mozilla from June 1999 to April 2003,
zoomed on the y axis. We consider open bugs with critical or blocker severity only.

visualization (zoomed on the y axis), where we highlight the two areas having the highest den-
sity of open bugs with a critical or blocker severity. The selection marked as “1” includes the
components Layout and Networking (belonging to the Browser product), from June 2001 to April
2003. The area marked as “2” covers the Mail Window Front End component of MailNews from
December 2000 to April 2003. The average numbers of bugs (per three days) are 158.9 (area 1)
and 71.5 (area 2), while the total numbers of different bugs are 2,338 (area 1) and 2,096 (area
2). The three mentioned components are also part of selection “2” and “4” in Figure 5.7 (as
listed in Table 5.2). We conclude that they are the most critical components, in terms of being
affected by severe bugs.

Summing Up

With limited time and resources, it is important to prioritize the reengineering effort on the most
troublesome and critical components of a software system. Using the System Radiography view
and the interactive features of Bug’s Life, we detected three components that should have a high
reengineering priority, as they were consistently affected by a large number of severe bugs. We
also selected a number of components (listed in Table 5.2) which—with a lower priority—should
be considered as starting points for reengineering. They have a lower priority because, although
consistently affected by a large number of bugs, these bugs are not severe.
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5.2.2 Analysis in the Small

With the System Radiography we detected a number of critical components in Mozilla. Now,
by means of the Bug Watch visualization, we focus our analysis on one of these components,
namely Networking belonging to the Browser product. Since the time window selected in the
analysis in the large (June 1999 – April 2003) is long, for the analysis in the small we reduce it
to the last six months.

Figure 5.9 shows a Bug Watch view of the open bugs affecting the Browser::Networking com-
ponent of Mozilla from November 2002 (mapped to 00:00 on the watch) to April 2003 (mapped
to 23:59). We observe five interesting facts that we annotate with numbers in the figure:

1. It is a crucial bug in the component, since it has blocker severity and maximum priority
(dark severity/priority layer), and it was reopened four times. The activity layer shows
that the history of the bug is rich of activities. The details of these activities (given in
the information panels) tell us that the developer in charge of fixing the bug changed six
times and that the bug is popular, since many e-mail addresses were added to the CC. The
problem is related to SSL channels and proxies, as stated in the bug description.

2. All these bugs are hard to fix, since they were reopened at least one time (and at most
three). They have various levels of severity and priority, but only one of them (marked
also as “4”) has a critical severity.

3. These bugs have an unusual life cycle: They passed from a resolved or verified status to
an unconfirmed or new status, without being reopened. By reading the activity details, we
discovered that this behavior is associated with a change of person in charge (assignedTo)
and often with a change of quality assurance person (qa).

4. All these bugs have the maximum level of priority and severity (critical or blocker).

5. This bug has a life cycle composed of one status only, but its history is full of activities. All
these activities are additions of CC, meaning that the bug is very popular.

All the other bugs have a “normal” life cycle for bugs that are not yet fixed, following for
example the transitions unconfirmed → new or new → assigned. None of these bugs has both
maximum priority and blocker or critical severity.

Summing Up

Bugs are not all the same. When dealing with software systems as big as Mozilla, with thousands
of bugs, knowing which bugs to fix first is a valuable piece of information. By using the System
Radiography view one can decide where to start the reengineering of a large system. Subse-
quently, the Bug Watch visualization offers a visual means to determine which bugs to fix first,
for example because they are severe or popular. The visualization is also useful to characterize
bugs based on their life cycles, and to assess the effort required for fixing them: For example,
bugs reopened several times, or bugs for which it is difficult to find the knowledgeable developer
(i.e., the person in charge to fix the bug changed many times) are hard to fix.
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Figure 5.9. A Bug Watch visualization of the bugs affecting the Browser::Networking component
of Mozilla. The reference time interval is November 2002 – April 2003.
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5.3 Discussion

The proposed visualizations support the analysis of a bug database at two different but comple-
mentary levels of granularity. This has two main benefits: (1) The technique scales up to the
size of Mozilla, i.e., 250,000 bugs and 2,700,000 activities, and (2) it is possible to visualize and
inspect any individual bug together with its history.

The interaction capabilities the tool offers, allows the user to “jump” from the large scale
System Radiography to a detailed Bug Watch view, which visualizes a selected part of the system
or even a single bug. Bug’s Life allows also the user to customize the views by applying filters to
bug properties such as priority and severity.

Another advantage of the approach is that both visualizations include the time dimension. In
particular the Bug Watch view has the time embedded in each figure. This permits any type of
layout and grouping, without loosing or modifying time-based properties of bugs (e.g., life cycle
and activities). The last benefit comes from the sorting and grouping techniques used in both
views, which ease the detection of critical system’s areas and the characterization of bugs.

Concerning limitations, the presented approach deals with bugs only, and not with source
code: When a bug has a valid link to a source code artifact (as modeled in Mevo), the Bug’s Life
tool does not let the user “jump” to the source code. However, while such a feature would be
useful, the focus of our technique is bugs and bug histories. The System Radiography view is
simple and easy to interpret. On the other hand, the Bug Watch visualization needs a trained
eye to exploit its potential.

Finally, regarding the experiments that we performed with the Mozilla case study, we do not
consider them as a full fledge validation of our approach, but an anecdotal evidence of it.

5.4 Summary

We presented an approach to support the analysis of a bug database, by means of two interactive
visualizations: The System Radiography and the Bug Watch views. The System Radiography is
aimed at studying the bug database in the large: The visualization is helpful to understand how
the open bugs are distributed in the system components and over time. It also highlights the
critical parts of the system, i.e., the components affected by the most severe bugs. The Bug
Watch view supports the analysis of the bugs affecting a limited part of the system, e.g., one or
few components. The visualization eases the characterization of bugs, the identification of the
critical ones and the assessment of the required fixing effort.

We applied our approach on the bug database of Mozilla, consisting of more than a quarter
million bugs with more than two millions activities. Through this large case study, we showed
how one can use our visual technique to answer questions concerning the resource optimization
problem, such as: From which components should I start the reengineering of the system? Given
a certain component, which bugs should I fix first? How difficult will it be to fix this bug?

Analyzing the evolution of software defects is complementary to studying source code evo-
lution. In the last two chapters we discussed two techniques to support these two activities in
isolation. The next chapter focuses on their combination, i.e., on the co-evolution of source code
and software defects.



Chapter 6

Code and Bug Co-Evolution Analysis

In Chapters 4 and 5 we studied the evolution of source code and the evolution of software
defects. In this chapter our goal is to analyze their co-evolution.

As discussed when presenting our Mevo meta-model (cf. Section 3.1), one of its key features
is that it integrates evolutionary source code information with bug data. Now we propose a
visual approach that exploits this integration and supports the analysis of code and bug co-
evolution. We introduce the Discrete Time Figure, a visual approach that embeds information
concerning development activities and bug data into one simple figure. The visualization also
provides structural information (such as a directory hierarchy structure or the number of files a
module contains), as it helps understand the relationships among software artifacts.

Our main goal is to make sense of the integrated information, and in particular we aim at:

• Showing the evolution of software entities at different granularity levels in the same way,
i.e., using the same visualization.

• Showing structural (such as software metrics), commit- and bug-related information.

• Merging all these kinds of information to obtain a clearer picture of a system’s entities
evolution. This is a key knowledge for a reengineering activity, since it allows an analyst
to detect the system’s hotspots, i.e., the starting points for a reengineering process.

There are technical challenges in achieving the above goals, the main one being how to
provide a large amount of information in a condensed, yet useful way. This also relates to scal-
ability, i.e., the visualization must work at all granularity levels of large and long-lived systems.
We deal with the scalability challenge by abstracting the evolution of code and bugs in “phases”
that describe trends of activity. However, phases focus on the evolution of code or bugs, but
do not consider their interrelationship. Therefore, based on visual properties of Discrete Time
Figures, we define a catalog of co-evolutionary patterns that describe such an interrelationship.
The patterns allow the characterization and the comparison of a system’s components, and they
define a vocabulary that is a useful communication means.

Structure of the chapter. In Section 6.1 we discuss the motivation and principles of our ap-
proach based on Discrete Time Figures. In Section 6.2 we present a catalog of co-evolutionary
patterns that characterize the co-evolution of software artifacts. We then apply our approach to
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three large systems (i.e., Apache, gcc and Mozilla) in Section 6.3. Before concluding the chapter
in Section 6.5, we discuss the limitations of our approach in Section 6.4.

6.1 Visualizing Evolving Software

Figure 6.1 depicts a possible way to visualize the co-evolution of code and bugs: It shows a
Timeline view (time is on the horizontal axis from left to right) where the displayed rectangles
and crosses represent commits and bugs, respectively.

Foo.java

Bar.java

Foo.java

Bar.java

Files

Bug data

Commit data

Time

A bug affecting Bar.java was reported

A new version of Bar.java was committed

Figure 6.1. One way of visualizing the co-evolution of code and bugs

The figure shows the co-evolution of two specific files, where we determine the horizontal
position of rectangles based on the commit timestamps, while for the position of the crosses we
consider when bugs were reported. The color maps author information (we use different colors
to represent different authors) for the commits and severity information (red denotes critical or
blocker severity and green stands for all the other severity levels) for the bugs.

Using such a figure we can detect the files that had an intense development or that generated
many bugs. However, the visualization is limited in the following ways:

1. It does not provide neither a qualitative nor a quantitative impression about the number
of bugs and commits over time.

2. It is applicable to files only, and not to directories or modules. Thus, one can use it to study
co-evolution at one level of abstraction only.

3. It does not scale: When the number of files, commits or bugs is high, the figures represent-
ing them are not intelligible any more.

To overcome these limitations we devised the Discrete Time Figure, a visualization that encap-
sulates commit and bug related information of a software entity. The Discrete Time Figure gives
an immediate view of the history of a software entity, with respect to its development intensity
(the number of commits) and its problems (the number of bugs). If the software entity is a di-
rectory or a module, the number of commits (bugs) is the sum of the number of commits (bugs)
of all the files the directory or module contains. The history can be enriched with a software
metric and structural information given by the view layout (e.g., the directory hierarchy).
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Commit data

Bug data
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Figure 6.2. The structure of a Discrete Time Figure

Figure 6.2 shows the structure of a Discrete Time Figure. It is composed of five subfigures,
marked with numbers in Figure 6.2. The subfigures marked as “1” and “2” are composed of a
sequence of rectangles that represents a discretization of time. Each rectangle is associated to a
precise and parametrizable interval of time, where two vertically aligned rectangles having the
same horizontal position represent the same time period.

We color the rectangles using a heat map, i.e., hot colors (in the red hue range) represent
time periods with many commits (or many reported bugs), whereas cold colors (in the blue
hue range) represent few commits (or few reported bugs). The white rectangles represent time
periods without development activity or without reported bugs. The black rectangles represent
time intervals after the removal of the entity from the system (the entity is “dead”). Figure 6.3
provides examples of the color mapping used in the Discrete Time Figure.

Many commits
First commit

Many reported bugs
Last reported bug

The entity was removed

Few reported bugs
First reported bug

Few commits The entity is dead

Min value

Max value

Heat map

Figure 6.3. The color mapping used in the Discrete Time Figure

The choice of the color is based on a set of thresholds, which can be either manually chosen
or automatically computed. For the latter we distinguish two different scenarios:

1. Local threshold. We compute the threshold values “locally” for each figure, taking into ac-
count only the bugs and commits concerning the target entity. We use the local thresholds
to characterize software entities, as discussed in Section 6.2.

2. Global threshold. We compute the threshold values “globally”, taking into account all the
bugs and commits relating to all the visualized entities. One can use these thresholds for
comparisons, since all the visualized figures refer to the same thresholds.

In Figure 6.2 the subfigures marked as “3” and “4” depict the average development intensity
and the average number of reported bugs, both over time. We color them according to these
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average values: Hot colors represent an intense development (or many reported bugs) consis-
tently over time, as opposed to cold ones, which are related to a limited development activity
(or few reported bugs). For the commit box, dark colors close to black mean that the entity was
removed from the system at the beginning; On the contrary, bright colors close to white imply
that the entity has only recently been created in the system. The two average boxes provide an
immediate overview of an artifact’s history, allowing us to easily compare it with other artifacts.

In the last subfigure (marked as “5” in Figure 6.2) we map a metric measurement on its color,
using the grayscale values: the darker the color, the highest the metric value. We do not always
make use of it, but it proved to be useful for high-level entities like directories or modules, where
we can use this box to represent—for example—the number of contained files.

Scalability issues

The Discrete Time Figure provides a lot of evolutionary information, but it still does not scale
well, as the color of the rectangles becomes undecipherable in zoomed out visualizations, when
the figure is small. To solve this problem we introduce the concept of phases, by aggregating a
sequence of rectangles into a bigger one. In particular, we define the following phases, depicted
in Figure 6.4:

• Stable. We define the Stable phase as a sequence of (at least) four adjacent time intervals
during which the number of commits (or bugs) is constantly low. Color wise, a Stable
phase is a sequence of at least four blue rectangles.

• High Stable. It is similar to the Stable phase, with the only difference that the number of
commits (or bugs) is constantly high instead of low. Color wise, a High Stable phase is a
sequence of at least four red rectangles.

• Spike. We define the Spike phase as: (1) An initial sequence of (at least) two time intervals
during which the number of commits (or bugs) remains low (i.e., two blue rectangles), (2)
one time interval during which this number is high (i.e., one red rectangle) and (3) a final
sequence similar (with the same characteristics) to the initial one.

Stable
(green)

High stable
(orange)

Spike
(pink)

Figure 6.4. Introducing phases in a Discrete Time Figure

In a Discrete Time Figure we highlight the phases by coloring their boundaries with different
colors: green for the Stable, orange for the High Stable and pink for the Spike phase. We also
use the boundary color to display the fact that entities are added to and removed from a system.
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1

2

Toolbar

Information panel

Visualization panel
3

Figure 6.5. Discrete Time Figures applied to a directory tree. The internal color of the rectangles
is not visible, while the color of the boundaries is. Thus, phases and addition/removal events
are still intelligible.

Figure 6.3 shows that rectangles representing periods of time preceding the first commit (the
addition of an entity) have gray boundaries, while rectangles following the removal of an entity
have red boundaries. Gray boundaries also represent zero commits or zero reported bugs.

In large scale visualizations phases are still intelligible, as the inner color of the rectangles
is not visible while the color of the boundaries is. Figure 6.5 provides an example of such a
visualization: It shows a directory tree where we represent directories as vertically aligned Dis-
crete Time Figures (or as white rectangles in case they do not contain files). In these figures the
color of the boundary only is visible, i.e., the phases only are intelligible. Figure 6.5 shows also
our tool BugCrawler, composed of three main parts (marked with numbers in the figure): (1)
The toolbar, used to perform actions such as creating visualizations, applying layouts, zooming,
configuring the views, etc., (2) the information panel, providing information about the selected
entity and (3) the visualization panel, where the main view is rendered. BugCrawler provides a
number of interactive features such as: spawning a new visualization on a selection at different
granularity levels (e.g., when selecting directories it is possible to spawn visualizations of files),
inspecting an entity represented by a figure, inspecting bug reports, jumping to the code, etc.
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Coloring the rectangle boundary is useful in large scale views but, at the same time, it might
make the figure slightly confusing in small scale views, especially for inexperienced users. To ad-
dress this problem, in BugCrawler the user can dynamically set the boundary coloring according
to the visualization scale.

In our Discrete Time Figure visualizations we use many different colors with different mean-
ings: We summarize all of them in Table 6.1.

Table 6.1. The colors used in the Discrete Time Figure and their meanings

Color Inner area Border Meaning
Red X Many commits or many reported bugs
Blue X Few commits or few reported bugs
White X Zero commits or zero reported bugs
Black X The entity was removed
Gray X Zero commit or zero reported bugs
Red X The entity was removed
Orange X High Stable phase
Green X Stable phase
Pink X Spike phase

6.2 Co-Evolutionary Patterns

Given a software entity, its Discrete Time Figure representation shows the development activity
history and the evolution of the problems affecting the entity. By using and combining these
pieces of information—and especially their visual representation—we define a catalog of co-
evolutionary patterns that characterize the evolution of software entities. In the following, we
describe each pattern in detail, using a fixed template: First, we provide the formal definition
of the pattern; then, we discuss how to interpret it; finally, we describe variations of the pattern
(when applicable) and show an example.

The catalog includes two types of patterns:

1. Patterns characterizing the entire history of a software entity: persistent, day-fly, intro-
duced for fixing, and stabilization. A software entity can have one instance only of these
patterns.

2. Patterns characterizing part of the history of a software entity: addition of features, bug
fixing and refactoring / code cleaning. An entity can have multiple instances of these
patterns.
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6.2.1 Persistent

Definition: We define an entity as persistent if the following two conditions hold: (1) it is still
“alive” (in the current version of the system) and (2) its lifetime is greater than the 80%
of the system’s lifetime, i.e., the commit coverage is at least 80%.

Small scale Large scale

Figure 6.6. An example of a persistent pattern. The entity is also bug persistent.

Small scale Large scale

Figure 6.7. An intensive and persistent pattern. The entity is also bug persistent.

Discussion: Persistent entities are likely to play important roles in the system because they
survived most of the system’s changes.

Variations: We distinguish two types of persistent patterns:

1. Bug persistent. We define an entity as bug persistent if it is persistent and the bug cover-
age is at least 80% of the commit coverage.1

The interpretation of this pattern is twofolds: On the one hand its presence can be a
good symptom, because it indicates that most of the development was performed together
with testing. On the other hand the pattern might reveal that the entity was affected by
problems for most of its lifetime.

2. Intensive and persistent. A software entity is intensive and persistent if (1) it is persis-
tent and (2) it had an intense development (a high number of commits, corresponding
to red rectangles in the Discrete Time Figure) for at least 80% of its lifetime. The inten-
sive and persistent entities are likely to hold a have key role in the system, as changes
are concentrated on them. They represent a good starting point for reverse engineering
activities.

Example: Figure 6.6 and Figure 6.7 show examples of all persistent patterns: Persistent, bug
persistent, and intensive and persistent.

1 Since the commit coverage for a persistent entity is at least 80% of the system’s lifetime, the bug coverage is at least
80%× 80%= 64% of the system’s lifetime.
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6.2.2 Day-Fly

Definition: We define a software entity as a day-fly if its commit coverage is at most 20% of the
system’s lifetime.

Small scale Large scale

Figure 6.8. A day-fly pattern

Small scale Large scale

Figure 6.9. A dead day-fly pattern

Discussion: The day-fly pattern represents a specific event in a software repository: A devel-
oper added an entity (file, directory or module) in the repository, the entity experienced
some changes for a short period of time and then nobody modified it anymore. This event
is generic and thus we can associate it with a number of different interpretations, among
which: (1) A spike solution, (2) a component no more under development, (3) a compo-
nent ported from a different system and slightly adjusted to make it work, (4) an entity
that—although being already part of the system—was added late to the repository.

Variations: Dead day-fly. It is an artifact removed from the system which lasted at most 20%
of the system’s lifetime.

As for the day-fly, we can interpret this pattern in different ways, as for example: (1)
Renaming,2 (2) fast prototyping, (3) a new implementation quickly removed.

Example: Figure 6.8 and Figure 6.9 show examples of respectively a day-fly and a dead day-fly
patterns.

2In CVS and SVN a renaming appears as a removal of an entity (the old name) and an addition of another entity (the
new name).



111 6.2 Co-Evolutionary Patterns

6.2.3 Introduced for Fixing

Definition: We define an entity as introduced for fixing if its first commit was after the first bug
affecting it was reported.3 Visually, this means that the first colored rectangle in the bug
subfigure is before the first one in the commit subfigure (cf. Figure 6.10).

tc: First commit

tb: First reported bug
Small scale Large scale

tc

tb 

Figure 6.10. An example of the introduced for fixing pattern

Discussion: We interpret this pattern in the following way. A bug b, affecting a certain system
component c, was reported at t1 and, after that, an entity e was introduced in the system
at t2. To fix b, a developer had to change some entities belonging to c and the entity e,
implying that also e was involved in the bug b. One possible explanation for this situation
is that the entity e was introduced in the system to fix the bug b affecting the component
c. Since the bug b was reported when the software entity e did not exist yet, b could not
be caused by e.

Variations: None.

Example: Figure 6.10.

3 This is possible for two reasons: First, in Mevo a bug can be linked with many software artifacts; Second, we
establish the link between a bug and a software artifact when the bug is fixed, and not when the bug is reported.
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6.2.4 Stabilization

Definition: We define an entity as stabilization if the following conditions hold: (1) The entity
is still living (it was not removed), (2) it had an intensive development and it was affected
by many bugs4 and (3) the last parts of the commits and bugs evolution are stable phases.

tc1: Intensive development

Small scale Large scaletb1: Many reported bugs

tc1 tc2

tb1 tb2

tc2: Stabilization

tb2: Stabilization

Figure 6.11. A stabilization pattern

Discussion: The stabilization pattern characterizes software entities that experienced an inten-
sive development and caused many bugs to be introduced in the system. These entities,
after a certain point, became stable, i.e., their development continued in a regular way
with less changes and less introduced bugs. Differently from the day-fly pattern, entities
with the stabilization pattern are still under development, as the number of commits and
reported bugs is small but not zero. The stabilization pattern suggests that no further
analysis is required.

Variations: None.

Example: Figure 6.11.

4We consider intensive development (or being affected by many bugs) a high stable phase or a spike phase or (at
least) five time intervals with a high number of commits or bugs.
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6.2.5 Addition of Features

Definition: An addition of features pattern consists in two contextual periods of time: one with
an intensive development and one with many reported bugs.

Formally, we define this pattern as the co-presence of two phases, one for the commits
and one for the bugs. We also define time constraints for the two phases: We name
tcbegin − tcend the time period of the commit phase and t bbegin − t bend the time period for
the bug phase. We define a software entity to have an addition of features pattern in the
following cases:

• Spike phase (commits) and spike phase (bugs) or spike phase (commits) and high
stable phase (bugs), with the following time constraint:

tcbegin ≤ t bbegin ≤ tcend + 2 time interval

• High stable phase (commits) and high stable phase (bugs) or high stable phase (com-
mits) and spike phase (bugs), with the time constraint:

tcbegin ≤ t bbegin ≤ tcend − 2 time interval

tcbegin

Small scale Large scale

tcend

tbbegin tbend

tcbegin tcend

tbbegin tbend

Figure 6.12. An example of the addition of features pattern with the high stable (commits) –
high stable (bugs) pair of phases

Discussion: The idea behind this pattern is that a development effort—revealed by a high num-
ber of commits for a considerable period of time—caused many bugs to be introduced
in the system. We associate the development effort and the addition of bugs with spike
or high stable phases. We name the pattern addition of features because adding features
is a bug prone development activity. However, this is only one possible interpretation:
The changes committed might be related to different development activities that are bug
prone, such as bug fixing performed by unexperienced developers.5

Variations: None.

Example: Figure 6.12.

5Purushothaman and Perry showed that 40% of bugs are introduced while fixing other bugs [PP05].
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6.2.6 Bug Fixing

Definition: The bug fixing pattern is symmetrical to the addition of features one. It also consists
in two contextual periods of time: one with an intensive development and one with few
reported bugs.

Using the terminology formulated for the previous pattern, we define the bug fixing pat-
tern as the co-presence of the following phases:

• Spike phase (commits) and stable phase (bugs), with the following constraint:

tcbegin ≤ t bbegin ≤ tcend + 2 time interval

• High stable phase (commits) and stable phase (bugs), with the time constraint:

tcbegin ≤ t bbegin ≤ tcend − 2 time interval

In addition, to have a bug fixing pattern, the following condition must hold: The number
of bugs reported during the time interval before t bbegin is greater than zero. This condition
implies that the number of reported bugs decreased at t bbegin.

tcbegin

Small scale Large scale

tcend

tbbegin tbend

tcend

tbbegin

tcbegin

tbend

Figure 6.13. An example of the bug fixing pattern with the high stable (commits) – stable (bugs)
pair of phases

Discussion: The idea of the bug fixing pattern is that an intensive development activity—
revealed by a high number of commits for a considerable period of time—caused the
number of reported bugs to decrease. One possible interpretation for this scenario is that
the development effort was spent to fix problems. Nevertheless, other explanations are
also reasonable, as for example: New features were added without introducing bugs or
bugs were actually introduced but not detected or reported.

Variations: None.

Example: Figure 6.13.
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6.2.7 Refactoring / Code Cleaning

Definition: We characterize a refactoring / code cleaning pattern with the following conditions:
(1) The number of reported bugs remained low for a period of time t b and (2) within t b
the number of commits increased and then remained high for a period tc included in t b.

Formally, a software entity has a refactoring / code cleaning pattern if:

• It has one of the following pairs of phases: (1) high stable (commits) and stable
(bugs), (2) spike (commits) and stable (bugs).

• The pair of phases fulfills the time constraint:

tcbegin > t bbegin ∧ tcend < t bend

tcbegin

Small scale Large scale

tcend

tbbegin tbend

tcbegin tcend

tbbegin tbend

Figure 6.14. An example of the refactoring / code cleaning pattern with the high stable (com-
mits) – stable (bugs) pair of phases

Discussion: This pattern indicates that an intense development activity did not impact the num-
ber of reported bugs. Since refactoring and code cleaning activities, if correctly performed,
are behavior preserving, they should not introduce bugs. For this reason we name this pat-
tern refactoring / code cleaning. However, we can also interpret this pattern in different
ways: Developers added new features without introducing bugs, or developers added fea-
tures and fixed bugs, or bugs were introduced but not reported.

Variations: None.

Example: Figure 6.14.
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6.2.8 Summing Up

Based on visual properties of Discrete Time Figures, we defined a catalog of patterns that charac-
terize the co-evolution of code and bugs. Since the patterns are formally defined, we can detect
them automatically. In our tool implementation we provide a query engine that detects and
counts patterns in a visualization. We recapitulate the patterns, the conditions to detect them
and their interpretations in Table 6.2.

Table 6.2. The catalog of co-evolutionary patterns

Name Condition Interpretation Example

Persistent Lifetime ! 80% of the 
system's lifetime.

Survived most of the 
system's changes.

Bug 
persistent

Persistent and bug 
coverage ! 80% of 
commits coverage.

Development and 
testing together or 
problematic entity.

Intensive 
and 
persistent

Persistent and intensive 
development for ! 80% 
of its lifetime.

Key entity as changes 
are concentrated on it.

Day-fly Commit coverage " 20% 
of the system's lifetime.

Spike solution, late 
addition in the 
repository, etc.

Dead day-
fly

Day-fly and removed 
from the system.

Renaming, fast 
prototyping, etc.

Introduced 
for fixing

First commit after first 
reported bug.

The entity was 
introduced to fix one or 
more bugs.

Stabilizati
on

Intensive development 
and many bugs followed 
by stable phases.

The entity got stable

Addition 
of features

Intensive development 
contextual to an increase 
in the number of bugs.

New features were 
added and adding them 
generated bugs.

Bug fixing Intensive development 
contextual to a decrease 
in the number of bugs.

The development effort 
was spent to fix 
problems. 

Refactorin
g / code 
cleaning

Intensive development 
contextual to a constantly 
low number of bugs

The development effort 
was spent for refactoring  
or code cleaning

tc

tb

tc

tb
tc1

tb1

tc2

tb2

The catalog of co-evolutionary patterns allows an analyst to (1) argue about a module or an
entire system in terms of the patterns it includes, (2) compare software entities according to the
pattern characterization and (3) detect components that need to be further analyzed.
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6.3 Experiments

To validate our approach we apply the following methodology on three software systems:

1. We build a view containing all the directories of the target system. Each directory is
represented as a Discrete Time Figure if it includes at least one file, or as a white rectangle
otherwise.

2. We apply the query engine (provided in our tool) on the view to detect the co-evolutionary
patterns. This allows us to characterize the system in terms of the number of patterns it
contains.

6.3.1 Case Studies

To perform our experiments we selected the following open source software project:6

• Apache HTTP Server. A widely adopted web server for Unix, Linux, OS X and Windows.

• gcc. The GNU compiler collection including front ends for C, C++, Objective-C, Fortran,
Java, Ada, etc.

• The four largest modules of Mozilla (in terms of files): SeaMonkeyCore, RaptorDist, Rap-
torLayout and CalendarClient.

Table 6.3 shows the dimensions of the systems in terms of size (number of source code files),
code evolution (number of commits) and bugs evolution (number of bugs and bug references7).

Table 6.3. The dimensions of the software systems used for the experiments

System # Source code files # Commits # Bugs # Bug references
Apache 393 15,524 377 717
gcc 18,150 254,785 3,347 12,936

Mozilla modules
SeaMonkeyCore 4,656 69,391 4,694 16,889
RaptorDist 3,446 50,033 2,753 10,028
RaptorLayout 2,925 99,899 5,797 22,865
CalendarClient 1,860 32,468 2,550 7,001

6.3.2 Characterizing the Evolution of the Systems

Table 6.4 summarizes the number of co-evolutionary patterns that we detect in Apache and
gcc. In the following we discuss, for each system, a number of insights that we infer from the
occurrences and frequencies of the patterns.

6The three software projects are available at: http://httpd.apache.org, http://gcc.gnu.org and http://www.

mozilla.org
7The number of bugs counts the number of different bug reports, while the number of bug references counts the links

with source code artifacts. For example, if a bug is linked with five source code artifacts, then the number of bugs is one,
while the number of bug references is five.

http://httpd.apache.org
http://gcc.gnu.org
http://www.mozilla.org
http://www.mozilla.org
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Table 6.4. Characterizing Apache and gcc in terms of patterns detected

Pattern Apache gcc
Not empty directory 92 1,145
Bug persistent 0 0
High persistent 0 5
Persistent 1 54
Dead day-fly 9 101
Day-fly 12 465
Total day-fly 21 566
Introduced for fixing 2 163
Stabilization 2 1
Spike - spike phases 1 13
High stable - high stable phases 0 10
Spike - high stable phases 0 0
High stable - spike phases 1 23
Total addition of feature 2 46
Spike - stable phase 2 16
High stable - stable phases 9 52
Total bug fixing 11 68
High stable - stable phases 0 8
Spike - stable phases 0 7
Total refactoring / code cleaning 0 15

Apache

The evolution of the Apache web server is characterized by:

• A relatively high number of day-fly (∼21–23%) and bug fixing patterns (∼11–12%).

• A small number (between zero and two) of all the other patterns.

• Only one persistent pattern, i.e., one directory only “survived” until the current version of
Apache and for more than 80% of the system’s lifetime.

From these facts, we infer that the Apache web server is a very active and lively project
(many day-flies), without a stable development core, i.e., a set of directories with an intensive
development for most of the system’s lifetime (only one persistent and two stabilizations).

gcc

The most interesting facts concerning gcc’s evolution are:

• The day-fly is the most frequent pattern, with 566 occurrences (∼ 49%).

• The introduced for fixing is the second most frequent pattern, with 163 instances (∼ 14%).

• There is one stabilization pattern only (∼ 0.0009%).

• All the other patterns (persistent, addition of features, bug fixing and refactoring / code
cleaning) are much less frequent, with a percentage ranging from 0.01% to 0.06%.
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Figure 6.15. A visualization of the libjava module of gcc. The area marked as “B” is a visualiza-
tion of the files belonging to the java/lang directory.
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We conclude that the evolution of gcc was scattered among many different components,
with condensed development activities: Half of the directories experienced an intensive devel-
opment but for a short period of time. This is because gcc includes front ends for many different
languages (more than 10) and supports a number of architectures (more than 50). One of the
components that underwent a long-lasting and constantly intensive development is the test suite.

Figure 6.15 shows an example of how different patterns are distributed in the gcc system.
The figure depicts a visualization of the libjava module of gcc, representing directories as Discrete
Time Figures. We see that the entire classpath directory tree is characterized by a day-fly pattern,
detailed in the area marked as “A”: All the directories were recently introduced in the system,
without generating bugs (yet). The other two big hierarchies in the module are gnu and java: The
directories belonging to these hierarchies experienced a long-lasting development—although
seldom intensive—and generated many bugs, especially those belonging to the java hierarchy.

We study more closely the directory java/lang, characterized by a persistent and bug persistent
patterns. Using the interactive features of our tool, we spawn a new visualization of the files
included in the java/lang directory, depicted in the area marked as “B” in Figure 6.15. In the
view we represent files as horizontally aligned Discrete Time Figures. We see that for some
files the development was concentrated at the beginning of the java/lang history (natFloat.cc,
natEcosProcess.cc and natMath.cc ), while for others it was in the middle (natStringBuffer.cc) or in
recent times (natStringBuilder.cc, natVMSecurityManager.cc and natVMThrowable.cc). All these files
did not generate bugs. Finally, we observe that all the other files experienced a long-lasting
development with periods of intensive activities. As oppose to the first group of files, they all
generated bugs.

Mozilla

Table 6.5 shows the number of patterns detected in four modules of Mozilla. We observe that:

1. The SeaMonkeyCore module—although not the biggest in terms of not empty directories—
has the maximum number of occurrences of most of the patterns (all but persistent and
stabilization).

2. RaptorDist—the biggest module—underwent a continuous and stable development, as it
has the maximum number of persistent and stabilization patterns.

3. The percentage of persistent and stabilization patterns is constant across modules, ranging
from 11% to 12% (persistent) and from 0.03% to 0.04% (stabilization). The percentage of
day-fly pattern is more variable: It ranges from 23% (RaptorDist) to 31% (CalendarClient).

Since in all the modules the day-fly pattern is more frequent than the persistent and sta-
bilization ones, we conclude that the software artifacts that experienced a long-lasting
development, surviving for most of the system’s lifetime, are a minority.

4. Mozilla went through substantial changes during its evolution, since the instances of the
addition of features pattern are much more than the bug fixing and refactoring / code
cleaning ones.

To provide an anecdotal example of our approach, we present a visualization of one of the
Mozilla’s module, namely CalendarClient (see Figure 6.16). We inspect the view to understand
how and where the various patterns are distributed within the module. In particular we spot the
following sets of directories:
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Table 6.5. Characterizing the four biggest modules of Mozilla in terms of patterns detected

Patterns SeaMonkeyCore RaptorDist RaptorLayout CalendarClient
Not empty directory 476 520 382 269
Bug persistent 47 35 36 25
High persistent 15 0 10 3
Persistent 59 60 46 29
Dead day-fly 68 98 68 37
Day-fly 62 26 39 49
Total day-fly 130 124 107 86
Introduced for fixing 77 50 57 50
Stabilization 16 25 14 12
Spike - spike phases 10 8 6 2
High stable - high stable phases 56 15 41 12
Spike - high stable phases 3 0 2 2
High stable - spike phases 46 11 30 13
Total addition of feature 115 34 79 29
Spike - stable phases 7 10 7 5
High stable - stable phases 20 13 20 11
Total bug fixing 27 23 27 16
High stable - stable phases 32 11 20 11
Spike - stable phases 21 13 10 5
Total ref. / code cleaning 53 24 30 16

• Removed. A large amount of directories were removed from the module: They are concen-
trated in the areas marked as “1”, “3”, “5”, “6” and “9” in Figure 6.16 Moreover, most of the
directories in “1” and several of them in “5” and “6” were removed at the same time (ap-
proximately at half), suggesting that the module experienced a considerable restructuring
at that point in time.

• Day-Fly. A considerable amount of directories have a day-fly pattern (areas “2” and “7”).
Development activities for most of them were concentrated in recent times. Eight directo-
ries only generated bugs, while seven were introduced for fixing bugs.

• Persistent. The most interesting part of the module is delimited by the yellow areas
(marked as “4” and “8”): It underwent a long-lasting and intensive development and it
generated the highest number of bugs. In this part of the module we detect a number of
different patterns: addition of features, bug fixing, refactoring / code cleaning, stabiliza-
tion and introduced for fixing. The areas “4” and “8” are hotspots, where one can start the
reverse engineering of the CalendarClient module.
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Figure 6.16. A visualization of the CalendarClient module of Mozilla
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6.4 Limitations

Large commits. The approach that we presented in this chapter, and especially the interpre-
tation of the co-evolutionary patterns, rely on the data gathered from software repositories and
processed with out Churrasco framework. As a consequence, the quality of this data unavoidably
impacts the quality of the results produced with our approach.

Bar.java and Foo.java 
committed together: 

Foo.java to fix the bug, 
Bar.java to add a feature

First commit of 
Foo.java

First commit of 
Bar.java

The bug 789 is 
reported

Commit comment:
Fixed bug 789

Foo

Bar
Bug
789

Affect

Affect

Time

Figure 6.17. An example of a wrong classification: Bar.java is wrongly defined as an introduced
for fixing. The cause of the error is that the developer committed a bug fix together with other
changes.

For example, we consider the scenario depicted in Figure 6.17: A developer changed the file
Foo.java to fix the bug 897 and she also changed the file Bar.java to add a new feature, committing
both files together in a unique transaction at time t3. Since the bug 897 was reported at time t1,
the first commit of Bar.java occurred at time t2 and t1 < t2, we define Bar.java as an introduced
for fixing (a bug was reported before the entity was introduced in the system). Nonetheless, the
definition is wrong and the error arises because the developer committed a big fix together with
other changes, thus impacting the quality of the links between software artifacts and bugs.

We already extensively discussed this problem (called the “Large commits” problem) when
we explained how we retrieve and process data from software repositories (cf. Section 3.2.3).
Specifically, we showed that the impact of large commits is limited, as they are very rare.

Names of the patterns. The names that we assigned to the co-evolutionary patterns are only
names, and do not imply that a developer performed the activity suggested by the pattern name.
For instance, the fact that we detect an addition of features pattern does not imply that a de-
veloper actually added some features: The co-evolutionary patterns describe the relationship
between the evolution of code and bugs, and their names are one possible interpretation of such
a relationship. Defining a pattern vocabulary is useful to characterize a system and, in general,
as a communication means: Mentioning a bug fixing pattern is equivalent of reporting that the
development activity was intensive while the number of bugs decreased.

Experiments. We applied our technique on three software systems: the Apache web server, the
GNU compiler collection (gcc) and the four largest modules of Mozilla. The experiments that
we reported are not a complete and in-depth analysis of the systems, but they provide anecdotal
evidence of our approach.
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6.5 Summary

In this chapter we presented a visual approach to study the relationship between the evolution
of software artifacts and the way they are affected by problems. The approach is based on the
application of Discrete Time Figures at any level of granularity. To tackle the scalability issue, we
abstract the commit and bug trends by means of Phases.

The Discrete Time Figure indicates patterns of particular interest in the study of a software
system’s evolution, such as: persistent, day-fly, introduced for fixing, stabilization, addition of
features, bug fixing, refactoring / code cleaning. These patterns include some of the possible
relationships between the histories of development activities and bugs, providing them a precise
and useful meaning. In our tool implementation we provide a query engine that allows the user
to automatically detect the patterns presented in this chapter.

An analyst or a project manager can use the Discrete Time Figure visualization and the cat-
alog of co-evolutionary patterns to support the following tasks: (1) characterize a system (or a
system’s component) in terms of patterns detected, (2) identify areas of interest within a compo-
nent (for example an analyst can be interested in the entities that exhibit an addition of features
pattern) and (3) compare different system’s modules in terms of patterns.

In this part of the thesis we studied the evolution of software artifacts (cf. Chapter 4), the
evolution of software defects (cf. Chapter 5) and their co-evolution (cf. Chapter 6) to support
the retrospective analysis of a software system and infer causes of problems. In the next part,
we exploit historical information about source code and bugs to predict future characteristics of
a software system.



Part III

Predicting the Future
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In the previous part of this dissertation, we introduced three retrospective analysis techniques. The
techniques, based on interactive visualizations, supports various maintenance activities aimed at
detecting reengineering candidates and inferring the causes of problem in a software system.

In this part of our dissertation, we focus on predicting the future of software systems. To this
aim, we present a set of analysis techniques, created—as the ones described in the previous part—on
top of our Churrasco framework.

In Chapter 7, we propose two novel defect prediction approaches based on the evolution of
various source code metrics over multiple versions of a system. Further, we introduce a publicly
available benchmark for comparing prediction techniques. In Chapter 8, we enrich existing defect
prediction models with information extracted from development mailing lists. To do so, we extend
the Mevo meta-model with e-mail information.

Thereafter, we investigate the relationships between certain characteristics of software entities,
known to have a negative impact on quality attributes, and software defects, a tangible effect of low
software quality. Such relationships—once understood—can support defect prediction, as they point
to defect-prone software artifacts. In Chapter 9, we study the correlation between change coupling
and defects. As the correlation holds, we augment defect prediction models with change coupling
information. In Chapter 10, we inspect the impact of several design flaws on the presence of software
defects. We also analyze the evolution of the flaws over a system’s history, to investigate whether
adding design flaws is likely to introduce defects.





Chapter 7

Predicting Defects with the
Evolution of Source Code Metrics

Defect prediction generated widespread interest for a considerable period of time, leading to
more than a hundred publications in the last ten years [MK10]. The driving scenario is resource
allocation: Time and manpower being finite resources, it makes sense to assign personnel and
resources to software components that are likely to generate bugs.

Researchers proposed a variety of approaches to tackle the problem, relying on diverse
information, such as code metrics [BBM96; OA96; BDW99; EMM01; SK03; GFS05; NB05a;
NBZ06; OW02; OWB04; OWB07] (e.g., lines of code, complexity), process metrics [NB05b;
Has09; MPS08; BEP07] (e.g., number of changes, recent activity) or previous defects [KZWZ07;
OWB05; HH05]. The jury is still out on the relative performance of these approaches. Most of
them were evaluated in isolation, or were compared to only few other approaches. As a matter
of fact, comparing defect prediction techniques is onerous: Different approaches require differ-
ent types of data from different repositories, e.g., software metrics from the source code, process
metrics from the versioning system repository and defect information from the bug database.
Moreover, a significant portion of the evaluations cannot be reproduced since the data used by
them came from commercial systems and is not available for public consumption. As a con-
sequence, researchers reached opposite conclusions: For example, in the case of size metrics,
Gyimothy et al. reported good results [GFS05], as opposed to the findings observed by Fenton
and Ohlsson [FO00].

What is missing is a baseline against which approaches can be compared. Our integrated
Mevo meta-model describes various aspects of a software system’s evolution, containing the
information required to evaluate several approaches across the bug prediction spectrum. There-
fore, exploiting the Mevo meta-model, we provide a baseline to compare defect prediction tech-
niques in the form of a publicly available benchmark. We do so by gathering an extensive dataset
composed of several open-source systems. In particular, we provide—for five open-source soft-
ware systems and over a five-year period—the following data: (1) process metrics on all the files
of each system, (2) system metrics on bi-weekly versions of each system, (3) defect information
related to each system file, and (4) bi-weekly source code models of each system version if new
metrics need to be computed.

We use our benchmark to evaluate a representative selection of defect prediction approaches
from the literature. Moreover, we devise two novel defect prediction techniques based on in-
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formation extracted from bi-weekly samples of the source code, available in Mevo as well as in
our benchmark. These techniques extend previous defect prediction approaches: The first one
measures code churn as deltas of source code metrics instead of line-based code churn. The
second one extends Hassan’s concept of entropy of changes [Has09] to source code metrics.

We evaluate the two novel techniques on the benchmark, obtaining the best and most stable
prediction results in our comparison.

Structure of the chapter. In Section 7.1 we motivate the need of a baseline to compare defect
prediction techniques. We describe our experiments and evaluation procedure in Section 7.2. In
Section 7.3, we detail the approaches that we reproduce and the ones that we introduce. We
detail the benchmark dataset in Section 7.4 and report on the performance of the compared
approaches in Section 7.5. In Section 7.6, we discuss possible threats to the validity of our
findings, and we conclude in Section 7.7.

7.1 Motivations

In Section 2.5.2 we surveyed approaches to defect prediction, the kind of data they require and
the various datasets on which they were validated. Here we recall the main bug prediction
families and observe why techniques are difficult to compare. Defect prediction approaches can
be classified in three main families:

1. SCM approaches use information extracted from versioning systems, assuming that recently
or frequently changed files are the most probable source of future bugs. These techniques
exploit measures such as code churn, entropy of changes (measuring the complexity of
code changes), number of authors, file size, file age, etc. Other approaches combine ver-
sioning system data with information extracted from defect archives, where the hypothesis
is that software artifacts presenting defects in the past will suffer them also in the future.

2. Single-version approaches assume that the current design and behavior of the program
influences the presence of future defects. These approaches do not require the history of
the system, but analyze its current state in more detail, using a variety of metrics. One
standard set of metrics used is the Chidamber and Kemerer (CK) metrics suite [CK94].
Other used metrics include the McCabe’s cyclomatic complexity, Briand’s coupling metrics
[BDW99], object-oriented metrics (number of classes, methods, attributes, fan in, fan out
and others), etc.

3. Other approaches exploit different types of data such as network metrics computed on
developer-artifact networks or graphs of binary dependencies, cohesion measurements
based on information retrieval techniques, call structure metrics, etc.

Surveying defect prediction approached, we observe that they are difficult to compare for
three main reasons:

1. The case study varies. Varying case studies make a comparative evaluation of the results
difficult. Validations performed on industrial systems are not reproducible, because it is
not possible to obtain the data that was used. There is also some variation among open-
source case studies, as some approaches have more restrictive requirements than others.
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2. The granularity of approaches varies. Some techniques predict defects at the class level,
others consider files, while others consider modules or directories (subsystems), or even
binaries.

3. The prediction task varies. While some approaches predict the presence or absence of bugs
for each component, others predict the amount of bugs affecting each component in the
future, producing a ranked list of components. The first ones are usually evaluated using
precision, recall, f-measure and accuracy; Techniques belonging to the second group are
evaluated with the Pearson’s or Spearman’s correlation coefficients.

The above reasons explain the lack of comparison between approaches and the occasional
diverging results when comparisons are performed.

7.2 Experiments

In this section, we give an overview of the prediction task we perform and justify our choices,
then we detail the evaluation strategy for our task, before presenting the tool that we imple-
mented to support bug prediction.

7.2.1 Prediction Task

We compare different bug prediction approaches in the following way: Given a release x of a
software system s, released at date d, the task is to predict, for each class of x, the number of post
release defects, i.e., the number of defects reported from d to six months later. We chose the last
release of the system in the release period and perform class-level defect prediction, and not
package- or subsystem-level defect prediction, for the following reasons:

• Predictions at the package-level are less helpful since packages are significantly larger. The
review of a defect-prone package requires more work than the one of a class.

• Classes are the building blocks of object-oriented systems, and are self-contained elements
from the point of view of design and implementation.

• Package-level information can be derived from class-level information, while the opposite
is not true.

We predict the number of bugs in each class—not the presence/absence of bugs—as this
better fits the resource allocation scenario, where we want an ordered list of classes. We use post-
release defects for validation (i.e., not all defects in the history) to emulate a real-life scenario.
As Zimmermann et al. we use a six months time interval for post-release defects [ZPZ07].

7.2.2 Evaluating the Approaches

To compare bug prediction approaches we apply them on the same software systems and, for
each system, on the same dataset. We consider the last major releases of the software systems
and compute the predictors up to the release dates.

We base our predictions on generalized linear regression models [DB08] built from the met-
rics we computed. The independent variables (used for the prediction) are the set of metrics



132 7.2 Experiments

under study for each class, while the dependent variable (the predicted one) is the number of
post-release defects. Following the methodology proposed by Nagappan et al. [NBZ06]—and
also used by Zimmermann et al. [ZN08]—we perform principal component analysis, build re-
gression models, and evaluate explanative and predictive power.

Principal Component Analysis (PCA). PCA [Jac03] is a standard statistical technique to avoid
the problem of multicollinearity among the independent variables. This problem comes from
intercorrelations amongst these variables and can lead to an inflated variance in the estimation
of the dependent variable. We do not build the regression models using the actual variables (e.g.,
metrics) as independent variables, but instead we use sets of principal components (PC). PC are
independent and do not suffer from multicollinearity, while at the same time they account for
as much sample variance as possible. We select sets of PC that account for a cumulative sample
variance of at least 95%.

Building Regression Models. To evaluate the predictive power of the regression models we do
cross-validation: We use 90% of the dataset, i.e., 90% of the classes (training set), to build the
prediction model, and the remaining 10% of the dataset (validation set) to evaluate the efficacy
of the built model. For each model we perform 50 “folds”, i.e., we create 50 random 90%-10%
splits of the data.

Evaluating Explanative Power. To evaluate the explanative power of the regression models
we use the adjusted R2 coefficient. The (non-adjusted) R2 is the ratio of the regression sum of
squares to the total sum of squares. R2 ranges from 0 to 1, and the higher the value is, the more
variability is explained by the model, i.e., the better the explanative power of the model is. The
adjusted R2, takes into account the degrees of freedom of the independent variables and the
sample population. As a consequence, it is consistently lower than R2. When reporting results,
we only mention the adjusted R2. We test the statistical significance of the regression models
using the F-test. All our regression models are significant at the 99% level (p < 0.01).

Evaluating Predictive Power. To evaluate the predictive power of the regression models, we
compute Spearman’s correlation (rspm) between the predicted number of post-release defects
and the actual number. The Spearman’s correlation is computed on two lists and is an indicator
of the similarity of their order. It ranges from 1 (perfect correlation) to -1 (perfect inverse
correlation), where 0 indicates no correlation. We decided to measure the correlation with the
Spearman’s coefficient (instead of, for example, the Pearson’s coefficient), as it is recommended
with skewed data. Our lists with number of actual and predicted bugs per class are skewed,
because most of the classes have no bugs. Such evaluation approach was broadly used to assess
the predictive power of a number of predictors [OW02; OWB04; NBZ06; ZPZ07; OWB07].

In the cross-validation, for each random split, we use the training set (90% of the dataset) to
build the regression model, and then we apply the obtained model on the validation set (10%
of the dataset), producing for each class the predicted number of post-release defects. Then, to
evaluate the performance of the performed prediction, we compute the Spearman’s correlation,
on the validation set, between the lists of classes ranked according to the predicted and actual
number of post-release defects. Since we perform 50 folds cross-validation, the final values of
the Spearman’s correlation and adjusted R2 are averages over 50 folds.
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7.2.3 Tool Support

To conduct the experiments presented in the third part of our dissertation, we implemented a
tool that we named “Pendolino”. Pendolino remotely accesses the data residing in the Churrasco
framework, i.e., Mevo models, and computes a number of attributes about a given model. For
example, Pendolino calculates all the metrics used as predictors in the experiments discussed
in this chapter. The tool also computes several other metrics that we present in the following
chapters.

Pendolino is written in Smalltalk. It does not feature a user interface, but instead it provides
a scriptable console to compute metrics and to export them as csv files. Like this, we can import
and use the metrics in statistical tools such as Matlab, R or SPSS.1

We carry out the bug prediction task detailed above by means of Matlab scripts. Such scripts
perform Principal Component Analysis, extract generalized regression models, do cross valida-
tion, and compute explanative and predictive power for the extracted models.

7.3 Bug Prediction Approaches

Table 7.1 summarizes the bug prediction approaches that we compare. In the following we detail
each approach.

Table 7.1. Categories of bug prediction approaches

Type Rationale Used by
Change metrics Bugs are caused by changes. Moser

[MPS08]
Previous defects Past defects predict future defects. Kim

[KZWZ07]
Source code metrics Complex components are harder to

change, and hence error-prone.
Basili
[BBM96]

Entropy of changes Complex changes are more error-
prone than simpler ones.

Hassan
[Has09]

Churn (source code metrics) Source code metrics are a better ap-
proximation of code churn.

Novel

Entropy (source code metrics) Source code metrics better describe
the entropy of changes.

Novel

7.3.1 Change Metrics

We selected the approach of Moser et al. as a representative, and describe three additional
variants.

MOSER. We use the catalog of file-level change metrics introduced by Moser et al. [MPS08]
listed in Table 7.2. The metric NFIX represents the number of bug fixes as extracted from the
versioning system log files, not the defect archive. It uses a heuristic based on pattern matching

1See http://www.mathworks.com, http://www.r-project.org and http://www.spss.com

http://www.mathworks.com
http://www.r-project.org
http://www.spss.com
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Table 7.2. Change metrics used by Moser et al.

Change Metrics
NR Number of revisions (number of versions of an artifact)
NREF Number of times a file has been refactored
NFIX Number of times a file was involved in bug-fixing
NAUTH Number of authors who committed the file
LINES Lines added and removed (sum, maximum, average)
CHURN Codechurn (sum, maximum and average)
CHGSET Change set (transaction) size (maximum and average)
AGE Age and weighted age

on the comments of every commit. To be recognized as a bug fix, the comment must match the
string “%fix%” and not match the strings “%prefix%” and “%postfix%”. The bug repository is not
required, because all the metrics are extracted from the CVS/SVN logs, thus simplifying data
extraction.

NFIX. Zimmermann et al. showed that the number of past defects has the highest correlation
with number of future defects [ZPZ07]. We inspect whether the set of change metrics can be
reduced to this variable only—an approximation of the actual defect count—and how much
precision is lost in the process.

NR. In the same fashion, since Graves et al. showed that the best generalized linear models for
defect prediction are based on number of changes [GKMS00], we isolate the number of revisions
as a predictive variable.

NFIX+NR. We combine the previous two approaches.

7.3.2 Previous Defects

This approach relies on a single metric to perform its prediction. We also describe a more fine-
grained variant exploiting the categories present in defect archives.

BUGFIXES. The bug prediction approach based on previous defects, proposed by Zimmermann
et al. [ZPZ07], states that the number of past bug fixes extracted from the repository is correlated
with the number of future fixes. They then use this metric in the set of metrics with which they
predict future defects. This measure is different from the metric used in NFIX and NFIX+NR: For
NFIX, we perform pattern matching on the commit comments. For BUGFIXES, we also perform
the pattern matching, which in this case produces a list of potential defects. Using the defect id,
we check whether the bug exists in the bug database, we retrieve it and we verify the consistency
of timestamps (i.e., if the bug was reported before being fixed).

Variant: BUG-CATEGORIES. We also use a variant in which, as predictors, we use the number
of bugs belonging to five categories, according to severity and priority. The categories are: All
bugs, non trivial bugs (severity>trivial), major bugs (severity>major), critical bugs (critical or
blocker severity) and high priority bugs (priority>default).
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7.3.3 Source Code Metrics

Many approaches in the literature use the CK metrics. We compare them with additional object-
oriented metrics, and LOC. Table 7.3 lists all source code metrics we use. The metrics are
computed on the latest version of the system for each eligible class.

Table 7.3. Class level source code metrics

CK metrics
WMC Weighted Method Count
DIT Depth of Inheritance Tree
RFC Response For Class
NOC Number Of Children
CBO Coupling Between Objects
LCOM Lack of Cohesion in Methods

Other object-oriented metrics
FanIn Number of other classes that reference the class
FanOut Number of other classes referenced by the class
NOA Number of attributes
NOPA Number of public attributes
NOPRA Number of private attributes
NOAI Number of attributes inherited
LOC Number of lines of code
NOM Number of methods
NOPM Number of public methods
NOPRM Number of private methods
NOMI Number of methods inherited

CK. Many bug prediction approaches are based on metrics, in particular the Chidamber &
Kemerer suite [CK94].

OO. An additional set of object-oriented metrics.

CK+OO. The combination of the two sets of metrics.

LOC. Gyimothy et al. and Ostrand et al. showed that lines of code (LOC) is one of the best
metrics for fault prediction [GFS05; OW02; OWB04; OWB07]. We treat it as a separate predictor.

7.3.4 Entropy of Changes

Hassan predicts defects using the entropy (or complexity) of code changes [Has09]. The idea
consists in measuring, over a time interval, how distributed changes are in a system. The more
spread, the higher is the complexity. The intuition is that one change affecting one file only is
simpler than one affecting many different files, as the developer who performs the change has
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to keep track of all of them. Hassan proposed to use the Shannon Entropy defined as:

Hn(P) =−
n
∑

k=1

pk ∗ log2 pk (7.1)

where pk is the probability that the file k changes during the considered time interval. Figure 7.1
shows an example with three files and three time intervals.

Time

File A

File B

File C

t1 (2 weeks) t2 (2 weeks) t3 (2 weeks)

Figure 7.1. An example of entropy of code changes

In the fist time interval t1, we have a total of four changes, and the change frequencies of the
files (i.e., their probability of change) are pA =

2
4
, pB =

1
4
, pC =

1
4
. The entropy in t1 is therefore:

H =−
2

4
∗ log2
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In t2, the entropy is higher:

H =−
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7
∗ log2
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7
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7
−

4

7
∗ log2

4

7
= 1.378

As in Hassan’s approach [Has09], to compute the probability that a file changes, instead of
simply using the number of changes, we take into account the amount of change by measuring
the number of modified lines (lines added plus deleted) during the time interval. Hassan defined
the Adaptive Sizing Entropy as:

H ′ =−
n
∑

k=1

pk ∗ logn̄ pk (7.2)

where n is the number of files in the system and n̄ is the number of recently modified files. To
compute the set of recently modified files we use previous periods (e.g., modified in the last six
time intervals).

To use the entropy of code change as a bug predictor, Hassan defined the History of Com-
plexity Metric (HCM) of a file j as:

HC M{a,..,b}( j) =
∑

i∈{a,..,b}

HC PFi( j) (7.3)

where {a, .., b} is a set of evolution periods and HC PF is defined as:

HC PFi( j) =

¨

ci j ∗H ′i , j ∈ Fi

0, otherwise
(7.4)

where i is a period with entropy H ′i , Fi is the set of files modified in the period i and j is a file
belonging to Fi . According to the definition of ci j , we test the following metrics:



137 7.3 Bug Prediction Approaches

• HCM: ci j = 1, every file modified in the considered period i gets the entropy of the system
in the considered time interval.

• WHCM: ci j = p j , each modified file gets the entropy of the system weighted with the
probability of the file being modified.

• ci j =
1
|Fi |

, the entropy is evenly distributed to all the files modified in the i period. We do
not use this definition since Hassan showed that it performs less well than the others.

Concerning the periods used for computing the History of Complexity Metric, we employ two
weeks time intervals.

Variants. We define three further variants based on HCM, with an additional weight for periods
in the past. In EDHCM (Exponentially Decayed HCM, introduced by Hassan), entropies for
earlier periods of time, i.e., earlier modifications, have their contribution exponentially reduced
over time, modeling an exponential decay model. Similarly, LDHCM (Linearly Decayed) and
LGDHCM (LoGarithmically Decayed) have their contributions reduced over time in a respectively
linear and logarithmic fashion. Both are novel. The definition of the variants follows (φ1,φ2

and φ3 are the decay factors):

EDHC M{a,..,b}( j) =
∑

i∈{a,..,b}

HC PFi( j)

eφ1∗(|{a,..,b}|−i)
(7.5)

LDHC M{a,..,b}( j) =
∑

i∈{a,..,b}

HC PFi( j)
φ2 ∗ (|{a, .., b}|+ 1− i)

(7.6)

LGDHC M{a,..,b}( j) =
∑

i∈{a,..,b}

HC PFi( j)
φ3 ∗ ln(|{a, .., b}|+ 1.01− i)

(7.7)

7.3.5 Churn of Source Code Metrics

Using churn of source code metrics to predict post release defects is novel. The intuition is that
higher-level metrics may better model code churn than simple metrics like addition and deletion
of lines of code. We sample the history of the source code every two weeks and compute the
deltas of source code metrics for each consecutive pair of samples.

For each source code metric, we create a matrix M where the rows are the classes, the
columns are the sampled versions (the FAMIX models in Mevo), and each cell is the value of the
metric for the given class at the given version. If a class does not exist in a version, we indicate
that by using a default value of -1. We only consider the classes that exist at release x for the
prediction.

Starting from the matrix M , we generate a matrix of deltas D, where each cell is the absolute
value of the difference between the values of a metric in two subsequent versions (two consec-
utive cells of the same row of M). If the class does not exist in one or both of the versions (at
least one value is -1), then the delta is also -1.

Figure 7.2 shows an example of deltas matrix for three classes. The numbers in the squares
are metrics while the numbers in the circles are deltas. After computing the deltas matrix for
each source code metric, we compute churn as:
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CHU(i) =
C
∑

j=1

¨

0, D(i, j) =−1
PCHU(i, j), otherwise

(7.8)

PCHU(i, j) = D(i, j) (7.9)

where i is the index of a row in the deltas matrix D (corresponding to a class), C is the
number of columns of the matrix (corresponding to the number of samples considered), D(i, j)
is the value of the matrix at position (i, j) and PCHU stands for partial churn. In other words,
for each class, we sum all the cells over the columns, excluding the ones with the default value
of -1. In this fashion we obtain a set of churns of source code metrics at the class level, which
we use as predictors of post release defects.

10Class Foo

Class Bar 42

Class Boo -1

2 weeks

Release X

50

32

50

22

70

22

48

40

10 15

Version from
1.1.2005

Version from
15.1.2005

Version from
29.1.2005

Time

10

-1

0

10

5

Figure 7.2. Computing metric deltas from sampled versions (FAMIX models) of a system

Variants. We define several variants of the partial churn of source code metrics (PCHU): The
first one weights more the frequency of change (i.e., the fact that delta > 0) than the actual
change (the delta value). We call it WCHU (weighted churn), using the following partial churn:

W PCHU(i, j) = 1+α ∗ D(i, j) (7.10)

where α is the weight factor, set to 0.01 in our experiments. This avoids that a delta of 10
in a metric has the same impact on the churn as ten deltas of 1. In fact, we consider many
small changes more relevant than few big changes. Other variants are based on weighted churn
(WCHU) and take into account the decay of deltas over time, respectively in an exponential
(EDCHU), linear (LDCHU) and logarithmic manner (LGDCHU), with the following partial churns
(φ1,φ2 and φ3 are the decay factors):

EDPCHU(i, j) =
1+α ∗ D(i, j)

eφ1∗(C− j)
(7.11)

LDPCHU(i, j) =
1+α ∗ D(i, j)
φ2 ∗ (C + 1− j)

(7.12)

LGDPCHU(i, j) =
1+α ∗ D(i, j)

φ3 ∗ ln(C + 1.01− j)
(7.13)
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7.3.6 Entropy of Source Code Metrics

In this bug prediction approach we extend the concept of code change entropy [Has09] to the
source code metrics listed in Table 7.3. The idea is to measure the complexity of the variants of a
metric over subsequent sample versions. The more distributed over multiple classes the variant
of the metric is, the higher the complexity. For example, if in the system the WMC changed by
100, and one class only is involved, the entropy is minimum, whereas if 10 classes are involved
with a local change of 10 WMC, then the entropy is higher. To compute the entropy of source
code metrics we start from the deltas matrix, computed as for the churn metrics. We define the
entropy—for instance for WMC—for the column j of the deltas matrix, i.e., the entropy between
two subsequent sampled versions of the system, as:

H ′W MC( j) =−
R
∑

i=1

¨

0, D(i, j) =−1
p(i, j) ∗ logR̄ j

p(i, j), otherwise (7.14)

where R is the number of rows of the matrix, R̄ j is the number of cells of the column j greater
than 0 and p(i, j) is a measure of the frequency of change (viewing frequency as a measure of
probability, similarly to Hassan) of the class i, for the given source code metric. We define it as:

p(i, j) =
D(i, j)

∑R
k=1

¨

0, del tas(k, j) =−1
D(k, j), otherwise

(7.15)

Equation 7.14 defines an adaptive sizing entropy, because we use R̄ j for the logarithm, in-
stead of R (number of cells greater than 0 instead of number of cells). In the example in Fig-
ure 7.2 the entropies for the first two columns are:

H ′(1) = −
40

50
∗ log2

40

50
−

10

50
∗ log2

10

50
= 0.722

H ′(2) = −
10

15
∗ log2

10

15
−

5

15
∗ log2

5

15
= 0.918

Given a metric, for example WMC, and a class corresponding to a row i in the deltas matrix,
we define the history of entropy as:

HHW MC(i) =
C
∑

j=1

¨

0, D(i, j) =−1
PHHW MC(i, j), otherwise

(7.16)

PHHW MC(i, j) = H ′W MC( j) (7.17)

where PHH stands for partial historical entropy.
Compared to the entropy of changes, the entropy of source code metrics has the advantage

that it is defined for every considered source code metric. If we consider “lines of code” (LOC),
the two metrics are very similar: HCM has the benefit that it is not sampled, i.e., it captures
all changes recorded in the versioning system, whereas HHLOC—being sampled—might lose
precision. For instance, if in the considered time interval one class has first an addition of 10
LOC and then a removal of 10 LOC, for HHLOC the class does not change at all, while with HCM
we measure a change of 20 lines. However, using a sample rate of two weeks we do not lose too
many changes. On the other hand, HHLOC is more precise, as it measures the real number of
lines of code (by parsing the source code), while HCM measures it from the change log, including
comments and whitespaces.
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Variants. In Equation 7.17 each class that changes between two versions (delta greater than
0) gets the entire system entropy. To take into account also how much the class changed, we
define the history of weighted entropy HWH, by redefining PHH as:

HW H(i, j) = p(i, j) ∗H ′( j) (7.18)

We also define three other variants by considering the decay of the entropy over time, as for
the churn metrics, in an exponential (EDHH), linear (LDHH), and logarithmic (LGDHH) fashion.
We define their partial historical entropies as (φ1,φ2 and φ3 are the decay factors):

EDHH(i, j) =
H ′( j)

eφ1∗(C− j)
(7.19)

LDHH(i, j) =
H ′( j)

φ2 ∗ (C + 1− j)
(7.20)

LGDHH(i, j) =
H ′( j)

φ3 ∗ ln(C + 1.01− j)
(7.21)

Based on the previous equations, we define several prediction models using several object-
oriented metrics: HH, HWH, EDHHK, LDHH and LGDHH.

7.4 Benchmark Dataset

Our dataset is composed of the change, bug and version information of the five systems detailed
in Table 7.4. All systems are written in Java to ensure that all the code metrics are defined
identically for each system. By using the same parser, we can avoid issues due to behavior
differences in parsing, a known problem for reverse engineering tools [KSS02]. We filter out
test classes from our dataset, since they are not relevant for the defect prediction task.

Table 7.4. Systems in the benchmark

System
url

Prediction 
release Time period #Classes #Versions #Transactions

#Post-rel. 
defects

Eclipse JDT Core 
www.eclipse.org/jdt/core/

3.4 1.01.2005 
6.17.2008

997 91 9,135 463

Eclipse PDE UI 
www.eclipse.org/pde/pde-ui/

3.4.1 1.01.2005 
9.11.2008

1,562 97 5,026 401

Equinox framework 
www.eclipse.org/equinox/

3.4 1.01.2005  
6.25.2008

439 91 1,616 279

Mylyn
www.eclipse.org/mylyn/

3.1 1.17.2005 
3.17.2009

2,196 98 9,189 677

Apache Lucene 
lucene.apache.org

2.4.0 1.01.2005  
10.08.2008

691 99 1,715 103

Figure 7.3 shows the types of information needed by the compared bug prediction ap-
proaches: (1) versioning system data to extract process metrics, (2) source code snapshots to
compute source code metrics and (3) defect information linked to classes for both the prediction
and validation. All this data can be extracted from a model conforming to the Mevo meta-model
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Figure 7.3. The types of data used by different bug prediction approaches.

specification, and thus it is accessible in our Churrasco framework. However, since computing
the metrics needed for the prediction is onerous, to provide a benchmark ready to use and to
easy the reproducibility of our experiments we distribute the dataset as a self-contained bundle,
composed of csv and mse2 files. In particular, the bundled dataset contains:

• Bi-weekly snapshots of the systems as FAMIX models.

• Bi-weekly values of 17 source code metrics (CK and OO) for each class.

• Categorized—with severity and priority—pre- and post-release defect counts for each
class.

• Values of 15 change metrics for each class.

• Churn of source code metrics (CK and OO) over bi-weekly versions of the systems, plus
weighted, linear, exponential and logarithmic variants (for each class).

• Entropy of source code metrics (CK and OO) over bi-weekly versions of the systems, plus
weighted, linear, exponential and logarithmic variants (for each class).

• Values of the entropy of code change metric, plus weighted, linear, exponential and loga-
rithmic variants (for each class).

All the metrics included in the dataset are computed by the Pendolino tool, which also gen-
erates the csv files. The benchmark is publicly available at http://bug.inf.usi.ch.

2mse is a file format used to exchange FAMIX models: http://scg.unibe.ch/wiki/projects/fame/mse

http://bug.inf.usi.ch
http://scg.unibe.ch/wiki/projects/fame/mse
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Table 7.5. Explanative power for all the bug prediction approaches

Adjusted R2 - Explanative power
Predictor Eclipse Mylyn Equinox PDE Lucene Score

Change metrics (Section 7.3.1)
MOSER 0.454 0.206 0.596 0.517 0.57 9
NFIX 0.143 0.043 0.421 0.138 0.398 -3
NR 0.38 0.128 0.52 0.365 0.487 2
NFIX+NR 0.383 0.129 0.521 0.365 0.459 2

Previous defects (Section 7.3.2)
BF (short for BUGFIXES) 0.487 0.161 0.503 0.539 0.559 5
BUG-CAT 0.455 0.131 0.469 0.539 0.559 5

Source code metrics (Section 7.3.3)
CK+OO 0.419 0.195 0.673 0.634 0.379 8
CK 0.382 0.115 0.557 0.058 0.368 0
OO 0.406 0.17 0.619 0.618 0.209 6
LOC 0.348 0.039 0.408 0.04 0.077 -3

Entropy of changes (Section 7.3.4)
HCM 0.366 0.024 0.495 0.13 0.308 -2
WHCM 0.373 0.038 0.34 0.165 0.49 -1
EDHCM 0.209 0.026 0.345 0.253 0.22 -4
LDHCM 0.161 0.011 0.463 0.267 0.216 -4
LGDHCM 0.054 0 0.508 0.209 0.141 -3

Churn of source code metrics (Section 7.3.5)
CHU 0.445 0.169 0.645 0.628 0.456 8
WCHU 0.512 0.191 0.645 0.608 0.478 11
LDCHU 0.557 0.214 0.581 0.616 0.458 11
EDCHU 0.509 0.227 0.525 0.598 0.467 11
LGDCHU 0.473 0.095 0.642 0.486 0.493 5

Entropy of source code metrics (Section 7.3.6)
HH 0.484 0.199 0.667 0.514 0.433 7
HWH 0.473 0.146 0.621 0.641 0.484 8
LDHH 0.531 0.209 0.596 0.522 0.343 8
EDHH 0.485 0.226 0.469 0.515 0.359 5
LGDHH 0.479 0.13 0.66 0.447 0.419 4

Combined approaches
BF+CK+OO 0.492 0.213 0.707 0.649 0.586 13
BF+WCHU 0.536 0.193 0.645 0.627 0.594 13
BF+LDHH 0.561 0.217 0.615 0.601 0.592 15
BF+CK+OO+WCHU 0.559 0.25 0.734 0.661 0.61 15
BF+CK+OO+LDHH 0.587 0.262 0.73 0.68 0.618 15
BF+CK+OO+WCHU+LDHH 0.62 0.277 0.754 0.691 0.65 15

7.5 Results

In Tables 7.5 and 7.6, we report the results of each approach on each case study, in terms of
explanative power (adjusted R2), and predictive power (Spearman’s correlation rspm).
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Table 7.6. Predictive power for all the bug prediction approaches

Spearman’s correlation rspm - Predictive power
Predictor Eclipse Mylyn Equinox PDE Lucene Score

Change metrics (Section 7.3.1)
MOSER 0.323 0.284 0.534 0.165 0.238 6
NFIX 0.288 0.148 0.429 0.113 0.284 -1
NR 0.364 0.099 0.548 0.245 0.296 5
NFIX+NR 0.381 0.091 0.567 0.255 0.277 4

Previous defects (Section 7.3.2)
BF (short for BUGFIXES) 0.41 0.159 0.492 0.279 0.377 10
BUG-CAT 0.434 0.131 0.513 0.284 0.353 9

Source code metrics (Section 7.3.3)
CK+OO 0.39 0.299 0.453 0.284 0.214 8
CK 0.377 0.226 0.484 0.256 0.216 4
OO 0.395 0.297 0.49 0.263 0.214 6
LOC 0.38 0.222 0.475 0.25 0.172 2

Entropy of changes (Section 7.3.4)
HCM 0.416 -0.001 0.526 0.244 0.308 5
WHCM 0.401 0.076 0.533 0.273 0.288 7
EDHCM 0.371 0.07 0.495 0.258 0.306 3
LDHCM 0.377 0.064 0.581 0.28 0.275 6
LGDHCM 0.364 0.03 0.562 0.263 0.33 5

Churn of source code metrics (Section 7.3.5)
CHU 0.371 0.226 0.51 0.251 0.292 5
WCHU 0.419 0.279 0.56 0.278 0.285 13
LDCHU 0.395 0.275 0.563 0.307 0.293 11
EDCHU 0.362 0.259 0.464 0.294 0.28 6
LGDCHU 0.442 0.188 0.566 0.189 0.29 7

Entropy of source code metrics (Section 7.3.6)
HH 0.405 0.277 0.484 0.266 0.318 9
HWH 0.425 0.212 0.48 0.266 0.263 5
LDHH 0.408 0.272 0.53 0.296 0.333 13
EDHH 0.366 0.273 0.586 0.304 0.337 11
LGDHH 0.421 0.185 0.492 0.236 0.347 8

Combined approaches
BF+CK+OO 0.439 0.277 0.547 0.282 0.362 15
BF+WCHU 0.448 0.265 0.533 0.282 0.31 11
BF+LDHH 0.422 0.221 0.533 0.305 0.352 12
BF+CK+OO+WCHU 0.425 0.306 0.524 0.31 0.298 11
BF+CK+OO+LDHH 0.44 0.291 0.571 0.312 0.377 15
BF+CK+OO+WCHU+LDHH 0.408 0.326 0.592 0.289 0.341 15

We also compute an overall score in the following way: For each case study, add three
to the score if R2 or rspm is within 90% of the best value, one if it is between 75–90%, and
subtract one when it is less than 50%. We use this score, rather than an average of the values,
to promote consistency: An approach performing very well on a case study, but bad on others
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will be penalized. We use the same criteria to highlight the results in Table 7.5 and Table 7.6:
R2 and rspm within 90% of the best value are bolded, the ones within 75% have a dark gray
background, while values less than 50% of the best have a light gray background. Scores of 10
or more denote good overall performance; they are underlined.

A general observation is the discrepancy between the R2 score and the rspm score for entropy
approaches (HCM–LGDHCM): This is because HCM and its variations are based on a single met-
ric, the number of changes, hence it explains a comparatively smaller portion of the variance,
despite performing well. Based on the results in the tables, we answer several questions.

What is the overall best performing approach? If we do not consider the amount of data
needed to compute the metrics and instead compare absolute predictive power, we can infer
the following: The best classes of metrics on all the datasets are the churn and the entropy of
source code, with WCHU and LDHH in particular scoring most of the times in the top 90% in
prediction, and WCHU having also a good and stable explanative power. Then the previous de-
fects approaches, BUGFIXES and BUG-CAT follow. Next comes the single-version code metrics
CK+OO, followed by the entropy of changes (WHCM) and change metrics (MOSER).

Approaches based on churn and entropy of source code metrics have good and stable explanative
and predictive power, better than all the other applied approaches.

What is the best approach, data-wise? If we take into account the amount of data and com-
putational power needed, one might argue that downloading and parsing several versions of the
source code is a costly process. It took several days to download, parse and extract the metrics
for about ninety versions of each software system. Two more lightweight approaches, which
work well in most of the cases, are based on previous defects (BUGFIXES) and source code met-
rics extracted from a single version (CK+OO). However, approaches based on bug or multiple
versions data have limited usability, as the history of the system is needed, which might be in-
accessible or—for newly developed systems—not even existent. This problem does not hold for
the source code metrics CK+OO, as only the last version of the system is necessary to extract
them.

Using the source code metrics (CK+OO) to predict bugs has several advantages: They are
lightweight to compute, have good explanative and predictive power and do not require historical
information.

What are the best source code metrics? The CK and OO metrics fare comparably in predic-
tive power (with the exception of Mylyn), whereas the OO metrics have the edge in explanative
power. However, the combination of the two metric sets CK+OO is a considerable improvement
over them separated, as the performance is more homogeneous across all case studies. In com-
parison, using lines of code (LOC) only, even if it is simple, yields a poor predictor, as its behavior
is unstable among systems: Its performance is reasonable on Eclipse, Equinox and PDE, but sub-
par on Mylyn and Lucene.

Using the CK and the OO metric sets together is preferable to using them in isolation, as the
performances are more stable across case studies.
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Is there an approach based on a single metric with good and stable performances? We have
just seen that LOC is a predictor of variable accuracy. All approaches based on a single metric,
i.e., NR, BUGFIXES, NFIX and HCM (and variants) have the same issues: The results are not
stable for all the case studies. However, among them BUGFIXES is the best one.

Bug prediction approaches based on a single metric are not stable over the case studies.

What is the best weighting for past metrics? In multi-version approaches and entropy of
changes, weighting has an impact on explanative and predictive power. Our results show that
the best weighting is linear, as models with linear decay have better predictive power and better
or comparable explanative power than models with exponential or logarithmic decay (for en-
tropy of changes, churn and entropy of source code metrics).

The best weighting for past metrics is the linear one.

Are bug fixes extracted from the versioning system a good approximation of actual bugs? If
we compare the performance of NFIX with respect to BUGFIXES and BUG-CAT, we see that the
heuristic searching bugs from commit comments is a poor approximation of actual past defects.
On the other hand, there is no improvement in categorizing bugs.

Using string matching on versioning system comments, without validating it on the bug database,
decreases the accuracy of bug prediction.

Can we go further? One can argue that bug information is anyways needed to train the model.
We investigated whether adding this metric to our best performing approaches would yield im-
provements at a moderate cost. We tried various combinations of BUGFIXES, CK+OO, WCHU
and LDHH. We display the results in the lower part of Table 7.5 and Table 7.6, and see that this
yields an improvement, as the BUGFIXES+CK+OO approach scores a 15 (instead of a 10 or an
8), despite being lightweight. The combinations involving WCHU, exhibit a gain in explanative
but not in predictive power: The Spearman’s correlation score is worse for the combinations
(11) than for WCHU alone (13). One combination involving LDHH, BF+CK+OO+LDHH, yields
a gain both in explanative and predictive power (15 for both). The same holds for the combina-
tion of all the approaches (BF+CK+OO+WCHU+LDHH).

Combining bug and OO metrics improves predictive power. Adding this data to WCHU improves
explanation, but degrades prediction, while adding it to LDHH improves both explanation and
prediction.

7.6 Threats to Validity

Threats to Construct Validity regard the relationship between theory and observation, i.e., the
measured variables may not actually measure the conceptual variable. These threats concern the
way we link bugs with software artifacts [BBA+09] and the noise affecting Bugzilla repositories
[AADP+08]. We already considered them in Section 3.2.3, when discussing the limitations of
populating Mevo models.
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Threats to Statistical Conclusion Validity concern the relationship between the treatment and
the outcome. In our experiments we used the Spearman’s correlation coefficient to evaluate the
performances of the predictors. All the correlations are significant at the 0.01 level.

Threats to External Validity concern the generalization of the findings. We applied the predic-
tion techniques to open-source software systems only. There are certainly differences between
open-source and industrial development, and in particular because some industrial settings en-
force standards of code quality. We minimized this threat by using parts of Eclipse in our bench-
mark, a system that while being open-source has a strong industrial background. A second threat
concerns the language: All considered software systems are written in Java. Adding non-Java
systems to the benchmark would increase its value, but would introduce problems since the
systems would need to be processed by different parsers, producing variable results.

To decrease the impact of a specific technology/tool, in our dataset we included systems
developed using different versioning systems (CVS and SVN) and different bug tracking systems
(Bugzilla and Jira). Moreover, the software systems in our benchmark are developed by indepen-
dent development teams and emerged from the context of two unrelated communities (Eclipse
and Apache).

7.7 Summary

Bug prediction concerns the resource allocation problem: Having an accurate estimate of the dis-
tribution of bugs across components helps project managers to optimize the available resources
by focusing on the problematic system parts. Different approaches were proposed to predict
future defects in software systems, which vary in the data sources they use and in the systems
they were validated on, i.e., no baseline to compare such approaches exists.

We introduced a benchmark to allow for common comparison, which provides all the data
needed to apply several prediction techniques proposed in the literature. Our dataset, publicly
available at http://bug.inf.usi.ch, allows the reproduction of the experiments reported in
this chapter and their comparison with novel defect prediction approaches. For example, Mende
used the dataset and replicated our entire set of experiments [Men10], reporting results consis-
tent with ours.

We evaluated a selection of representative approaches from the literature, some novel ap-
proaches we introduced, and a number of variants. Our results showed that the best performing
techniques are WCHU (Weighted Churn of source code metrics) and LDHH (Linearly Decayed
Entropy of source code metrics), two novel approaches we proposed. They gave consistently
good results—often in the top 90% of the approaches—across all five systems. As WCHU and
LDHH require a large amount of data and computation, past defects and source code metrics
are lightweight alternatives with overall good performance. Our results provided evidence that
prediction techniques based on a single metric do not work consistently well across all systems.

In this chapter we exploited all the information included in Mevo: Versioning system data to
extract process metrics, multiple FAMIX models over time to compute the churn and entropy of
source code metrics, and bug information to count pre- and post-release defects. In the following
chapter, we go one step further: We extend Mevo to include e-mail archive data and investigate
whether such data can be used for defect prediction.

http://bug.inf.usi.ch


Chapter 8

Improving Defect Prediction with
Information Extracted from E-Mails

In the previous chapter, we discussed a number of approaches proposed by researchers to predict
software defects, exploiting a variety of sources of information, such as source code metrics, code
churn, process metrics extracted from versioning system repositories and past defects. In this
chapter, we investigate whether an unexplored source of information, i.e., development mailing
lists, can be used for defect prediction. To this aim, we extend the Mevo meta-model with e-mail
data.

Due to the increasing extent and complexity of software systems, it is common to see large
teams, or even communities, of developers working on the same project in a collaborative fash-
ion. In such cases e-mails are the favorite media for the coordination between the partici-
pants. Mailing lists, which are preferred over person-to-person e-mails, store the history of
inter-developers, inter-users, and developers-to-users discussions: Issues range from low-level
decisions (e.g., bug fixing, implementation issues) up to high-level considerations (e.g., design
rationales, future planning).

Development mailing lists of open source projects are easily accessible and they contain
information that can be exploited to support a number of activities. For example, researchers
can improve the understanding of software systems by adding sparse explanations enclosed in
e-mails [ACC+02]; the rationale behind the system design can be extracted from the discussions
that took place before the actual implementation [LFGT09]; one can assess the impact of source
code changes by analyzing the effect on the mailing list [PBD08]; hidden coupling of entities
that are not related at code level can be discovered if often mentioned together in discussions.

One challenge when dealing with mailing lists as a source of information is correctly linking
each e-mail to any source code artifact it discusses. For this task, we use a lightweight grep-based
technique that is able to reach an acceptable level of precision in the linking [BDLR09]. Such a
technique allows us to link e-mails with FAMIX classes.

At this point, the question is: Is the information contained in mailing lists relevant for defect
prediction? The source code of software systems is only written by developers, who must follow
a rigid and terse syntax to define abstractions they want to include. On the other side of the
spectrum, mailing lists, even those specifically devoted to development, archive e-mails written
by both programmers and users. Thus, the entities discussed are not only the most relevant from
a development point of view, but also the most exploited during the use of a software system.

147



148 8.1 Methodology

In addition, the content of e-mails is expressed using natural language, which does not require
the writer to carefully explain all the abstractions using the same level of importance, but easily
permits to generalize some concepts and focus on others. For this reason, we expect information
extracted from mailing lists to be independent from those provided by the source code. Thus,
e-mails can add valuable information to established defect prediction approaches.

We present different “popularity” metrics that express the importance of each source code
entity in discussions taking place in development mailing lists. Our hypothesis is that such
metrics are an indicator of possible flaws in software components, thus being correlated with
the number of defects. We aim at answering the following research questions:

• Q1: Does the popularity of software components in discussions correlate with software defects?

• Q2: Is a regression model based on popularity metrics a good predictor for software defects?

• Q3: Does the addition of popularity metrics improve the prediction performance of existing
defect prediction techniques?

We provide the answers to these questions by validating our approach on four different open
source software systems.

Structure of the chapter. In Section 8.1 we articulate the methodology that we follow to con-
duct our experiments: How we collect, process and analyze the data in order to construct and
test popularity metrics. In Section 8.2 we describe the dataset of our case study, how we evaluate
the popularity metrics and what are the results achieved. We discuss our findings in Section 8.3.
In Section 8.4 we list the possible threats to the validity of our experiments and how we strived
to reduce them. We review related work in Section 8.5 and conclude in Section 8.6.

8.1 Methodology

Our goal is first to inspect if popularity metrics correlate with software defects, and then to study
whether existing bug prediction approaches can be improved using such metrics. To do so, we
follow the methodology depicted in Figure 8.1:

• We extract e-mail data, link it with source code entities (i.e., FAMIX classes) and compute
popularity metrics (marked as “1” in Figure 8.1). We extract and evaluate source code
and change metrics from Mevo models using our Pendolino tool. The metrics are the same
used in Chapter 7, listed in Table 7.2 and Table 7.3.

• We quantify the correlation of popularity metrics with software defects extracted from
Mevo (marked as “2”), using as baseline the correlation between source code metrics and
software defects (marked as “3”).

• We build regression models with popularity metrics as independent variables and the num-
ber of post-release defects as the dependent variable (marked as “4”). We evaluate the
performance of the models using the Spearman’s correlation between the predicted and
the reported bugs (marked as “5”). We create regression models based on source code
metrics and change metrics alone, and later enrich these sets of metrics with popularity
metrics, to measure the improvement given by them.
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Figure 8.1. Overall schema of our approach

In the experiments, we focus on object-oriented Java software systems using classes as target
entities. We decided to focus on classes, and not for example on packages, for the same reasons
discussed in Section 7.2.1. We do not filter out test classes, because they are mentioned in e-mail
discussions.

To measure the correlation between metrics and defects we consider all the defects, while
for bug prediction only post-release defects, i.e., the ones reported within a six months time
interval after the considered release of the software system (as in the experiments reported in
Chapter 7).

The extraction of popularity metrics, given a software system and its mailing lists, is done in
two steps: First it is necessary to extend Mevo to model e-mail data, i.e., link each FAMIX class
with all the e-mails discussing it, then the metrics must be computed using the links obtained.

8.1.1 Extending Mevo to Model E-Mail Data

Figure 8.2 shows the technique to link e-mails to classes. First, we parse the target e-mail archive
to build an e-mail model including body, headers and additional data about the inter messages
relationships, i.e., thread details.

Then, we link each FAMIX class extracted from Mevo with any e-mail referring it, using
lightweight linking techniques based on regular expressions, which were proved to be effective
[BDLR09]. We obtain a Mevo model enriched with all the connections and information about
classes stored in the e-mail archive. Through this model we can extract a catalog of popularity
metrics presented next.

Implementation wise, augmenting Mevo to include e-mail data consists in extending the
meta-model description: The Meta-base component, part of our Churrasco framework, then
automatically generates the importer and exporter to store and retrieve the new data to/from
the Churrasco backend database.
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8.1.2 Popularity Metrics

Table 8.1 lists the popularity metrics that we devised to answer our research questions. For
each popularity metric that we propose, we also provide the rationale behind its creation and a
high-level description of its implementation, using the enriched Mevo meta-model.

Table 8.1. Class-level popularity metrics

Popularity Metrics
POP-NOM Number of e-mails
POP-NOCM Number of characters in e-mails
POP-NOT Number of threads
POP-NOMT Number of e-mails in threads
POP-NOA Number of authors

POP-NOM: To associate the popularity of a class with discussions in mailing lists, we count
the number of e-mails that mention it. Since we consider development mailing lists, we presume
that classes are mainly mentioned in discussions about failure reporting, bug fixing and feature
enhancements, thus they can be related to defects. Thanks to the enriched Mevo model we
generate, it is simple to compute this metric. Once the mapping from classes to e-mails is
completed, and the model contains the links, we count the number of links of each class.

POP-NOCM: Development mailing lists can also contain other topics than technical discus-
sions. For example, while manually inspecting part of our dataset, we noticed that voting about
whether and when to release a new version occurs quite frequently in the Lucene, Maven and
Jackrabbit mailing lists. Equally, announcements take place with a certain frequency. Usually
this kind of messages are characterized by a short content (e.g., “yes” or “no” for voting, “con-
gratulations” for announcements). The intuition is that e-mails discussing flaws in the source
code could present a longer amount of text than e-mails about other topics. We consider the
length of messages taking into account the number of characters in the text of e-mails: We eval-
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uate the POP-NOCM metric by adding the number of characters in all the e-mails related to a
given class.

POP-NOT: It is a long tradition in mailing lists to divide discussions in threads. Our hypothesis
is that all the messages that form a thread discuss the same topic: If an author wants to start
talking about a different subject she can create a new thread. We suppose that if developers
are talking about one defect in a class they will continue talking about it in the same thread.
If they want to discuss about an unrelated or new defect (even in the same class) they would
open a new thread. The number of threads, then, could be a popularity metric whose value is
related to the number of defects. After extracting e-mails from mailing lists, our e-mail model
also contains the information about threads. Once the related e-mails are available in the Mevo
model, we retrieve this thread information from the messages related to each class and count
the number of different threads. If two, or more, e-mails related to the same class are part of
the same thread, they are counted as one.

POP-NOMT: Inspecting sample e-mails from our dataset, we noticed that short threads are
often characteristic of: (1) “announcements” e-mails, (2) simple e-mails about technical issues
experimented by new users of the systems or (3) updates about the status of development.
We hypothesize that longer threads could be symptoms of discussions that raise the interest
of developers, such as those about defects or changes in the code. For each FAMIX class, we
consider the threads of all the referring e-mails, and we count the total number of e-mails in
each thread. If a thread is composed of more than one e-mail, but only one is referring the class,
we still count all the e-mails inside the thread, since it is possible that following e-mails reference
the same class implicitly.

POP-NOA: A high number of authors talking about the same class suggests that it is subject
to broad discussions. For example, a class frequently mentioned by different users can hide
design flaws or stability problems. Also, a class discussed by many developers might be not
well-defined, comprehensible or correct, thus more defect prone. For each class, we count the
number of different authors that wrote in referring e-mails (i.e., if the same author wrote two,
or more, e-mails we count only one).

8.2 Experiments

We conducted our experiments on the software systems depicted in Table 8.2. We considered
systems that deal with different domains and have distinct characteristics (e.g. popularity, num-
ber of classes, e-mails, and defects) to mitigate some of the threats to external validity. These
systems are stable projects, under active development, and have a history with several major
releases. All are written in Java to ensure that all the code metrics are defined identically for
each system.

Public development mailing lists used to discuss technical issues are available for all the
systems, and are separated from lists specifically thought for system user issues. We consider
e-mails starting from the creation of each mailing list until September 2009. Messages automat-
ically generated by bug tracking and revision control systems are filtered out, and we report the
resulting number of e-mails and the number of those referring to classes according to our linking
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Table 8.2. Dataset

System
URL

Description #Classes
Mailing listsMailing listsMailing lists Bug DataBug Data

System
URL

Description #Classes
Creation

#E-Mails#E-Mails
Time period #Bugs

System
URL

Description #Classes
Creation

Total Linked
Time period #Bugs

Equinox
eclipse.org/equinox

Plugin system for the 
Eclipse project 439 Feb ‘03 5,575 2,383 Feb ‘03 - Jun ‘08 1,554

Jackrabbit
jackrabbit.apache.org

Implementation of the 
Content Repository for 
Java Technology API

1,913 Sep ‘04 11,901 3,358 Sep ‘04 - Aug ‘09 975

Lucene
lucene.apache.org

Text search engine 
library 1,279 Sep ‘01 17,537 8,800 Oct ‘01 - Sep ‘09 1,274

Maven
maven.apache.org

Tool for build 
management of Java 
projects

301 Nov ‘02 65,601 4,616 Apr ‘04 - Aug ‘09 616

techniques. All systems have public bug tracking systems, that were usually created along with
the mailing lists.

8.2.1 Correlations Analysis

To answer the question Q1 “Does the popularity of software components correlate with software
defects?”, we compute the correlation between class level popularity metrics and the number of
defects per class. We compute the correlation in terms of both the Pearson’s and the Spearman’s
correlation coefficient (rprs and rspm, respectively). Contrarily to Pearson’s correlation, Spear-
man’s one is less sensitive to bias due to outliers and does not require data to be metrically
scaled or of normality assumptions [Tri06]. Including the Pearson’s correlation coefficient aug-
ments the understanding of the results: If rspm is higher than rprs, we might conclude that the
variables are consistently correlated, but not in a linear fashion. If the two coefficients are very
similar and different from zero, there is indication of a linear relationship. Finally, if the rprs

value is significantly higher than rspm, we can deduce that there are outliers in the dataset. This
information first helps us to discover threats to construct validity, then highlights single elements
that are heavily related. For example, a high rprs can indicate that, among the classes with the
highest number of bugs, we can find also the classes with the highest number of related e-mails.

We compute the correlation between class level source code metrics and number of defects
per class, to compare the correlation to a broadly used baseline. We only show the correlation
for the source code metric LOC, as previous research showed that it is one of the best metrics for
defect prediction [GFS05; OW02; OWB04; OWB07]. Table 8.3 shows the correlation coefficients
between the different popularity metrics and the number of bugs of each system.

We put in bold the highest values achieved for both rspm and rprs, by system. Results provide
evidence that the two metrics are rank correlated, and correlations over 0.4 are considered to
be strong in fault prediction studies [ZN08]. The rspm in our study exceed this value for three
systems, i.e., Equinox, Lucene, and Maven. In the case of Jackrabbit, the maximum coefficient
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Table 8.3. Spearman’s and Pearson’s correlation coefficients between number of defects per
class and class level popularity metrics (and LOC)

System
POP-NOM POP-NOCM POP-NOT POP-NOTM POP-NOA LOC
rspm rprs rspm rprs rspm rprs rspm rprs rspm rprs rspm rprs

Equinox .52 .51 .52 .42 .53 .54 .52 .48 .53 .50 .73 .80
Jackrabbit .23 .35 .22 .36 .24 .36 .23 -.02 .23 .34 .27 .54
Lucene .41 .63 .38 .57 .41 .57 .42 .68 .41 .54 .17 .38
Maven .44 .81 .39 .78 .46 .78 .44 .81 .45 .78 .55 .78

is 0.24, which is similar to the value reached using LOC. The best performing popularity metric
depends on the software system: For example in Lucene, POP-NOTM, which counts the length
of threads containing e-mails about the classes, is the best choice, while POP-NOT, number of
threads containing at least one e-mail about the classes, is the best performing for other systems.

8.2.2 Defect Prediction

To answer the research question Q2 “Is a regression model based on the popularity metrics a
good predictor for software defects?”, we create and evaluate regression models in which the
independent variables are the class level popularity metrics, while the dependent variable is the
number of post-release defects per class. We create regression models based on source code
metrics and change metrics alone, as well as models in which these metrics are enriched with
popularity metrics, where the dependent variable is always the number of post-release defects
per class. We then compare the prediction performances of such models to answer research
question Q3 “Does the addition of popularity metrics improve the prediction performance of existing
defect prediction techniques?”

We follow the same methodology used in Chapter 7 and detailed in Section 7.2.2, consist-
ing of: Principal component analysis, building regression models, performing 50 folds cross-
validation and evaluating explanative (adjusted R2) and predictive power (rspm).

Results

Tables 8.4 and 8.5 display the results we obtained for the defect prediction, considering respec-
tively adjusted R2 values and Spearman’s correlation coefficients. The first row shows the results
achieved using all the popularity metrics defined in Section 8.1. In the following four blocks, we
report the prediction results obtained through the source code and change metrics, first alone,
then by incorporating each single popularity metric, and finally incorporating all the popularity
metrics. For each system and block of metrics, when popularity metrics augment the results of
other metrics, we put in bold the highest value reached.

Analyzing the results of the sole popularity metrics, we notice that, in terms of correlation,
Equinox and Maven still present a strong correlation, i.e., higher than .40, while Lucene is less
correlated. The popularity metrics alone are not sufficient for performing predictions in the
Jackrabbit system. Looking at the results obtained by using other metrics, we first note that
Jackrabbit’s results are much lower if compared to those reached in other systems, especially for
the R2, and partly for the rspm. Only the rspm reached with change metrics reach good results in
this system.
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Table 8.4. Defect prediction results: Adjusted R2

Metrics
Adjusted R2

Equinox Jackrabbit Lucene Maven Avg

All popularity metrics .23 .00 .31 .55 .27

All change metrics (MOSER) .55 .06 .43 .71 .44
MOSER + POP-NOM .56 .06 .43 .71 .44
MOSER + POP-NOCM .58 .06 .43 .70 .44
MOSER + POP-NOT .56 .06 .43 .71 .44
MOSER + POP-NOMT .56 .06 .43 .70 .44
MOSER + POP-NOA .56 .06 .43 .70 .44
MOSER + All POP .61 .06 .45 .71 .46

Improvement 11% 0% +5% 0% +4%

OO metrics .61 .03 .27 .42 .33
OO + POP-NOM .62 .03 .33 .59 .39
OO + POP-NOCM .62 .04 .32 .56 .38
OO + POP-NOT .61 .03 .31 .57 .38
OO + POP-NOMT .62 .03 .35 .60 .40
OO + POP-NOA .61 .04 .30 .56 .38
OO + All POP .62 .03 .37 .61 .41

Improvement +2% +25% +37% +45% +27%

CK metrics .54 .01 .39 .28 .31
CK + POP-NOM .56 .02 .40 .54 .38
CK + POP-NOCM .57 .02 .40 .50 .37
CK + POP-NOT .56 .01 .40 .51 .37
CK + POP-NOMT .57 .01 .40 .56 .39
CK + POP-NOA .56 .02 .40 .51 .37
CK + All POP .57 .02 .42 .58 .40

Improvement +6% +50% +8% +107% +43%

CK + OO metrics .66 .04 .44 .45 .40
CK + OO + POP-NOM .67 .04 .45 .60 .44
CK + OO + POP-NOCM .66 .04 .45 .56 .43
CK + OO + POP-NOT .66 .04 .44 .57 .43
CK + OO + POP-NOMT .67 .04 .44 .62 .44
CK + OO + POP-NOA .66 .04 .44 .57 .43
CK + OO + All POP .67 .04 .46 .63 .45

Improvement +2% 0% +5% +40% +12%

Going back to the other systems, the adjusted R2 values are always increased and the best
results are achieved when using all popularity metrics together. The increase with respect to
the other metrics varies from 2%, when other metrics already reach high values, up to 107%.
Spearman’s coefficients also increase by using the information given by popularity metrics: Their
values augment, on average, more than fifteen percent. However, there is not a single popularity
metric that outperforms the others, and their union does not give the best results.
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Table 8.5. Defect prediction results: Spearman’s correlation coefficient

Metrics
Spearman’s correlation rspm

Equinox Jackrabbit Lucene Maven Avg

All popularity metrics .43 .04 .27 .52 .32

All change metrics (MOSER) .54 .30 .36 .62 .45
MOSER + POP-NOM .53 .32 .38 .69 .48
MOSER + POP-NOCM .57 .31 .43 .60 .48
MOSER + POP-NOT .54 .31 .39 .59 .46
MOSER + POP-NOMT .53 .29 .41 .60 .46
MOSER + POP-NOA .58 .29 .37 .43 .42
MOSER + All POP .52 .30 .38 .43 .41

Improvement +7% +7% +19% +11% +11%

OO metrics .51 .17 .31 .52 .38
OO + POP-NOM .53 .14 .35 .52 .38
OO + POP-NOCM .51 .15 .36 .60 .41
OO + POP-NOT .49 .15 .38 .52 .38
OO + POP-NOMT .55 .14 .33 .43 .36
OO + POP-NOA .53 .12 .38 .70 .43
OO + All POP .58 .14 .32 .52 .39

Improvement +14% -12% +23% +35% +15%

CK metrics .51 .13 .36 .60 .40
CK + POP-NOM .48 .13 .35 .69 .41
CK + POP-NOCM .50 .17 .33 .42 .35
CK + POP-NOT .53 .13 .34 .52 .38
CK + POP-NOMT .52 .14 .25 .49 .35
CK + POP-NOA .52 .14 .41 .53 .40
CK + All POP .51 .16 .30 .52 .37

Improvement +4% +31% +14% +15% +16%

CK + OO metrics .48 .15 .35 .36 .33
CK + OO + POP-NOM .59 .15 .34 .62 .43
CK + OO + POP-NOCM .51 .16 .30 .31 .32
CK + OO + POP-NOT .50 .14 .35 .52 .38
CK + OO + POP-NOMT .53 .14 .35 .34 .34
CK + OO + POP-NOA .51 .15 .34 .43 .36
CK + OO + All POP .51 .16 .33 .52 .38

Improvement +23% +7% +0% +72% +26%

8.3 Discussion

Based on the results presented above, we answer our three research questions.

Q1: Does the popularity of software components in discussions correlate with software
defects? Three software systems out of four show a strong rank correlation, i.e., coefficients
ranging from .42 to .53, between defects of software components and their popularity in e-mail
discussions. Only Jackrabbit is less rank correlated with a coefficient of .23.

Popularity of software components do correlate with software defects.
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Q2: Is a regression model based on popularity metrics a good predictor for software de-
fects? In the second part of our results, consistently with the correlation analysis, the quality
of predictions on Jackrabbit using popularity metrics are extremely low, both for the adjusted
R2 values and for the Spearman’s correlation coefficients. On the contrary, our popularity met-
rics applied to the other three systems lead to different results: Popularity metrics are able to
predict defects. However, if used alone, they do not compete with the results obtained through
other metrics. The best average results are shown by the change metrics, corroborating previous
research stating the quality of such predictors [MPS08; BEP07].

Popularity can predict software defects, but without major improvements over previous estab-
lished techniques.

Q3: Does the addition of popularity metrics improve the prediction performance of ex-
isting defect prediction techniques? We obtained the best results by integrating the pop-
ularity information into other techniques. This creates more reliable and complete predictors
that significantly increase the overall results: The improvements on correlation coefficients are,
on average, more than fifteen percent higher, with peaks over 30% and reaching the top value
of 72%, to those obtained without popularity metrics. This corroborates our initial assumption
that popularity metrics measure an aspect of the development process that is different from
those captured by other techniques.

Results put in evidence that, given the considerable difference of the prediction performance
across different software projects, bug prediction techniques that exploit popularity metrics
should not be applied in a “black box” way. As suggested by Nagappan et al. [NBZ06], the
prediction approach should be first validated on the history of a software project, to see which
metrics work best for predictions.

Popularity metrics do improve prediction performances of existing defect prediction techniques.

8.4 Threats to validity

Threats to construct validity. We already considered some of these threats in Section 3.2.3,
when discussing the limitations of populating Mevo models.

Another threat concerns the procedure for linking e-mails to discussed classes. We use link-
ing techniques whose effectiveness was measured [BDLR09], and it is known that they cannot
produce a perfect linking. The enriched Mevo model can contain wrongly reported links or miss
connections that are present. We alleviated this problem by manually inspecting all the classes
that showed an exceptional number of links (i.e., outliers) and, whenever necessary, adjusted
the regular expressions composing the linking techniques to correctly handle such unexpected
situations. We removed from our dataset any e-mail automatically generated by the bug tracking
system and the revision control system, because they could bias the results.

Threats to statistical conclusion validity. In our experiments all the Spearman’s correlation
coefficients and all the regression models were significant at the 99% level.

Threats to external validity. We analyzed only open-source software projects, however the
development in an industrial environment may differ and conduct to different comportments in
the developers, thus to different results. Another external validity threat concerns the language:
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All the software systems are developed in Java. Although this alleviates parsing bias [KSS02],
communities using other languages could have different developer cultures and the style of e-
mails can vary.

8.5 Related work

We already surveyed related work in the area of defect prediction in Section 2.5.2. Here we
present previous approaches that mine data from e-mail archives.

Li et al. first introduced the idea of using the information stored in mailing lists as an addi-
tional predictor for finding defects in software systems [LHS05]. They conducted a case study
on a single system, used a number of previously known predictors and defined new mailing list
predictors. Mainly such predictors counted the number of messages to different mailing lists
during the development of software releases. One predictor, called TechMailing and based on
number of messages to the technical mailing list during development, was found to be the most
highly rank correlated with the number of defects, among all the predictors evaluated. Our work
differs in genre and granularity of defects we predict: We focus on defects on small source code
units that can be easily reviewed, analyzed, and improved. Moreover, Li et al. did not remove
the noise from the mailing lists, focusing only on source code related messages.

Pattison et al. were the first to introduce the idea of studying software entity (function, class,
etc.) names in e-mails [PBD08]. They used a linking technique based on simple name matching,
and found a high correlation between the amount of discussions about entities and the number
of changes in the source code. However, Pattison et al. did not validate the quality of their links
between e-mails and source code. Our work was the first to measure the effectiveness of linking
techniques for e-mails and source code [BDLR09].

To our knowledge, this research is the first work that uses information from development
mailing lists at class granularity to predict and to find correlation with source code defects.
Other works also analyzed development mailing lists but extracting a different kind of informa-
tion: social structures [BGD+06], developers participation [MFH02], inter-projects migration
[BGD+07], and emotional content [RH07].

8.6 Summary

We extended our Mevo meta-model to describe e-mail information. Based on the extended meta-
model, we devised a novel approach to correlate popularity of source code artifacts within e-mail
archives to software defects. We also investigated whether such metrics could be used to predict
post-release defects. We showed that, while there is a significant correlation, popularity metrics
by themselves do not outperform source code and change metrics in terms of prediction power.
However, we demonstrated that, in conjunction with source code and change metrics, popu-
larity metrics increase both the explanative and predictive power of existing defect prediction
techniques.

The focus of this chapter was popularity metrics extracted from e-mail discussions: We in-
vestigated whether they correlate with software defects and if they can improve previous defect
prediction techniques. In the following chapter, we conduct a similar analysis, but concentrat-
ing on a different type of information: We study the relationship between change coupling and
software defects.
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Chapter 9

On the Relationship Between Change
Coupling and Software Defects

In Chapter 4 we presented the Evolution Radar, a visual approach to analyze change coupling
information. Change coupling is the implicit and evolutionary dependency between two, or
more, software artifacts that, although potentially not structurally related, evolve together and
are therefore linked to each other from an evolutionary point of view. Through two case studies,
we showed that change coupling information can be used to pinpoint architectural design issues
in a software system.

Also other researchers observed that change coupling is a bad symptom in a software system:
At a fine grained level, because a developer who changes an entity might forget to change
related entities [ZWDZ05; BZ06], or—at the system level—because high change coupling among
modules points to design issues such as architecture decay [GHJ98; GJK03; PGFL05].

All the mentioned approaches assume that change coupling, indeed, is a cause of issues in
a software system. However, the relationship between change coupling and a tangible effect of
software issues was not studied yet. To perform such an investigation, one needs an objective
quantification of the issues that affect a software system and its components. A defect repository,
which records all the known issues about a software system, provides such a quantification.
Eaddy et al. performed a similar study linking cross-cutting concerns with defects [EZS+08], but
the specific case of change coupling remains unaddressed.

We define several measures of change coupling and analyze their correlations with software
defects, using as baseline the correlation between source code metrics and software defects. We
provide empirical evidence, through three case studies, that the defined change coupling metrics
correlate with defects, and investigate the relationships of such metrics with defects based on
the severity of the reported bugs. Finally, we study whether the performance of defect prediction
models, based on source code metrics, can be improved with change coupling information.

Structure of the chapter. We define change coupling measures in Section 9.1 and describe
our dataset in Section 9.2. We analyze the correlation of the defined coupling measures with
software defects in Section 9.3. In Section 9.4 we discuss how to enrich defect prediction models
with change coupling information and which improvements they provide. We address the threats
to validity in Section 9.5 and conclude in Section 9.6.

159
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9.1 Measuring Change Coupling

The Mevo meta-model includes all the pieces of information needed to perform our study: Ver-
sioning system data to extract change coupling dependencies, source code information to com-
pute code metrics, and bug data to count the number of defects per software entity. However,
to quantify the correlation of change coupling with software defects, we need to measure the
change coupling. It is the implicit dependency of software artifacts that have been observed to
frequently change together during the evolution of a software system. The more they changed
together, the stronger the change coupling dependency is. Still, there is no consensus on the
formal definition of change coupling, and several alternative measures exist. We formally define
four measures of change coupling emphasizing different aspects.

We need change coupling measures that are defined for each class in the system. We decided
to carry out our analysis at the class level because classes are a cornerstone of the object-oriented
paradigm, and we want to be able to compare change coupling with object oriented metrics.

The measures we define concern the coupling of a class with the entire system. An alternative
is a measure of change coupling for each pair of entities in the system. However, since bugs are
often mapped to one entity only, we opted for a coupling measure involving one entity only. We
can define a measure of coupling of a class with the entire system simply by aggregating the
pairwise coupling measures.

In the following definitions we use the concept of n-coupled classes. We define two classes as
n-coupled if there are at least n transactions that include both the classes. As a consequence, all
our change coupling measures are functions of n. Given two classes c1 and c2, we consider them
n-coupled if the following condition holds:

|{t ∈ T |c1 ∈ t ∧ c2 ∈ t}| ≥ n (9.1)

where T is the set of all the transactions. Given a class c, we define the set of coupled classes
(SCC) as:

SCC(c, n) = {ci |ci 6= c ∧ c is n-coupled with ci} (9.2)

Figure 9.1 shows an example scenario with five classes and six transactions. In this case,
SCC(c2,3) = {c1, c5}, SCC(c2,4) = {c1, c5} and SCC(c2,5) = {c1}.

Number of Coupled Classes (NOCC)

The first per-class measure of change coupling is the number of classes n-coupled with a given
class c. This measure emphasizes the raw number of classes with which a given class is coupled
with. We define NOCC as:

NOCC(c, n) = |SCC(c, n)| (9.3)

The NOCC measure is the cardinality of the set of coupled classes. In the example in Fig-
ure 9.1 NOCC(c2,3) = 2.

Sum of Coupling (SOC)

The sum of coupling is the sum of the shared transactions between a given class c and all the
classes n-coupled with c. We define SOC as:
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SOC(c, n) =
∑

ci∈SCC(c,n)

|{t ∈ T |ci ∈ t ∧ c ∈ t}| (9.4)

The SOC measure is the sum of the cardinalities of the sets of transactions that include the
class c and the classes n-coupled with c. Compared to NOCC, SOC also takes into account the
strength of the couplings. In Figure 9.1 SOC(c2,3) = 4+ 5= 9.

c1

c2

c3

c4

c5

t1 t2 t3 t4 t5 t6

Time

Figure 9.1. Sample scenario of classes and transactions

Exponentially Weighted Sum of Coupling (EWSOC)

EWSOC is a variation of SOC, where the shared transactions are exponentially weighted accord-
ing to their distance in time: Recent changes are emphasized over past changes, following an
exponential decay model. We define EWSOC as:

EWSOC(c, n) =
∑

ci∈SCC(c,n)

EW C(ci , c), where (9.5)

EW C(ci , c) =
∑

tk∈T (c)

(

0 if ci /∈ tk
1

2|T (c)|−k if ci ∈ tk
(9.6)

T (c) is the set of all the transactions, sorted by time, that include the class c. Figure 9.2
shows an example of EWSOC computation for the class c2 with n = 3. In this case, T (c2) =
{t1, t3, t4, t5, t6}, |T (c2)|= 5 (t2 is not included in the computation since c is absent in it), and
therefore:

EWSOC(c2, 3) = EW C(c2, c1) =
1

25−5 +
1

25−4 +
1

25−3 + 0+
1

25−1

Linearly Weighted Sum of Coupling (LWSOC)

The last per-class measure of change coupling is another variation of SOC, in which the shared
transactions are linearly weighted according to their distance in time. As EWSOC, LWSOC em-
phasizes recent changes, but following a linear decay model, and thus penalizing past changes
less than EWSOC. We define LWSOC as:
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LWSOC(c, n) =
∑

ci∈SCC(c,n)

LW C(ci , c), where (9.7)

LW C(ci , c) =
∑

tk∈T (c)

(

0 if ci /∈ tk
1

|T (c)|+1−k
if ci ∈ tk

(9.8)

In Figure 9.2, LWSOC(c2,3) is equal to LW C(c2, c1)

LWSOC(c2,3) = LW C(c2, c1) =
1

6− 5
+

1

6− 4
+

1

6− 3
+ 0+

1

6− 1

c1

c2

t1 t2 t3 t4 t5 t6

Time
Current release

k = 5k = 4k = 3k = 2k = 1

ew =  1
21 ew =  1

20ew =  1
22ew =  1

24

lw =  1
1

lw =  1
2

lw =  1
3

lw =  1
5

Exponential
weight (ew)

Linear
weight (lw)

Figure 9.2. Example EWSOC and LWSOC computations

Common Behaviors and Differences

All the measures are defined on a class-by-class level, and aggregated to recover a measure of
the coupling of one class with the entire system. All the defined metrics decrease if n increases,
as the set of coupled classes at the value n shrinks if n increases. We compute the coupling
measures by means of our Pendolino tool.

Beyond that, these four measures emphasize different aspects of change coupling: NOCC
measures only the number of co-change occurrences of a class with all the other classes that
exceed the threshold n. On the other hand, SOC takes into account the magnitude of each
coupling relationship beyond the threshold, so that a pair of classes changing extremely often
together is weighted differently. EWSOC and LWSOC function similarly, but consider the recency
of the co-change relationships. A reason for this is that two classes may have been co-changed
heavily in the past, but then have been refactored to not depend on each other: Their past
behavior should not affect their current coupling value. EWSOC discounts the past more quickly
than LWSOC does.



163 9.2 Case Studies

9.2 Case Studies

To study the relationship between change coupling and software defects we analyzed three large
Java software systems: ArgoUML, Eclipse JDT Core, and Mylyn. Table 9.1 shows their size in
terms of classes and transactions.

Table 9.1. Measures of the studied software systems

System
url

Description #Classes #Transactions
#Transactions 
per class (avg)

#Shared transactions 
per class (avg)

ArgoUML
http://argouml.tigris.org

UML modeling tool 2,197 15,257 14.30 0.37

Eclipse JDT Core 
www.eclipse.org/jdt/core/

Java Infrastructure of 
the Java IDE

1,193 13,186 68.00 5.30

Mylyn
www.eclipse.org/mylyn/

Task management 
framework for Eclipse

3,050 9,373 11.70 0.39

In computing the change coupling measures, one problem that we encountered concerns
large commits, i.e., transactions involving a large number of artifacts, typically license updates.
These transactions involve totally unrelated artifacts, and thus might alter change coupling mea-
sures. We already discussed the problem in Section 3.2.3, when describing how we populate
Mevo models, concluding that the solution is to filter out large commits. In our experiments
we filtered out all transactions involving more than 100 classes, which were 86 for ArgoUML
(0.6%), 59 for Eclipse JDT Core (0.4%), and 102 for Mylyn (1.1%). We manually inspected the
commit comments of these transactions, the vast majority of which concerned license changes,
Javadoc and documentation updates.

9.3 Correlation Analysis

The goal of the correlation analysis is to answer the following questions:

1. Does change coupling correlate with software defects? If so, which change coupling mea-
sure correlates best?

2. Does change coupling correlate more with severe defects than with minor ones?

We compute the values of the correlation between the number of defects per class (or number
of defects with a given severity) and the various measures of change coupling. We quantify the
correlation in terms of the Spearman’s correlation coefficient, which is less sensitive to bias due
to outliers and recommended with skewed data. In computing the correlation we consider all
the defects in the history of the systems.

To make a comparison with a broadly used baseline, we also compute the correlation be-
tween the number of defects per class and the following metrics: The Chidamber & Kemerer
object oriented metrics suite (listed in Table 7.3), a selection of other object-oriented metrics
(NOA: Number Of Attributes, NOM: Number Of Methods, Fan in, Fan out, LOC: Lines Of Code)
and the number of changes to a class (Changes).
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Figure 9.3. Correlations between number of defects per class and class level change coupling
measures, number of changes, and the best object-oriented metric (i.e., Fan out for Eclipse and
ArgoUML, and CBO for Mylyn). The correlations are measured with the Spearman’s coefficient.

9.3.1 Results

Figure 9.3 and Figure 9.4 show the Spearman’s correlation of the number of defects with the
metrics we tested across the three case studies. Figure 9.3 displays the correlation for all levels,
while Figure 9.4 shows it for selected categories of bugs, according to their labels in the bug
tracking system (major bugs and high priority bugs). All the graphs follow the same format:
The Spearman’s correlation is indicated on the y axis, while the x axis indicates the threshold
used for the computation of change couplings metrics (i.e., the value of n used as a basis to
compute n-coupled classes). For example, all the change coupling measures at the x position of
3 are computed using the set of 3-coupled classes. Metrics that do not depend on this threshold
(such as Changes, Fan out, or CBO) are hence flat lines. The metrics on each graph are the four
coupling measures (NOCC, SOC, EWSOC, LWSOC), the number of changes metric, and the best
performing among the object-oriented metrics for each project and each bug category.
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(a) Major bugs
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(b) Bugs with high priority

Figure 9.4. Spearman’s correlations between number of major/high priority bugs and change
coupling measures

Correlation with all types of bugs. Figure 9.3 shows the correlation of metrics with all types
of bugs, for all systems. The best performing object-oriented metrics are: Fan out for Eclipse and
ArgoUML, and CBO for Mylyn. In all the software systems change coupling indeed correlates
with the number of defects, since the Spearman’s coefficient reaches values above 0.5, especially
for Eclipse where the maximum Spearman’s is above 0.8. The SOC measure is the best for
ArgoUML and Mylyn, and the second best for Eclipse. All the coupling measures decrease after
a certain value of n: 3 for ArgoUML and Mylyn, 10 for Eclipse. EWSOC and LWSOC do not
correlate for low values of n, while they are comparable with NOCC and SOC for n ≥ 3 in
ArgoUML and Mylyn, n≥ 10 for Eclipse.
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Correlation with major bugs. Figure 9.4(a) shows the Spearman’s correlation between the
number of major bugs and change coupling measures. We consider a bug as major if its severity
is major, critical or blocker. We also show the correlations with number of changes and the best
object-oriented metric: Fan out for Eclipse and LOC for Mylyn. For Eclipse, with 3 ≤ n ≤ 20
NOCC and SOC are very close to number of changes (about 0.7). EWSOC and LWSOC have bad
performances with n < 10, while starting from 10 they are above 0.6. In the case of Mylyn the
correlations are lower, with a maximum of circa 0.4. For n= 5 all the change coupling measures
are at the maximum and above number of changes, and for n > 8 they rapidly decrease. We
do not show the result for ArgoUML because the number of major bugs is not large enough to
obtain significant correlations.

Correlation with high priority bugs. Figure 9.4(b) shows the Spearman’s correlation for the
number of high priority bugs, i.e., bugs having priorities above the default value (P3). This time,
the best object-oriented metrics are Fan out for Eclipse and CBO for ArgoUML. For this particular
type of bugs, the correlations are weaker, with a maximum around 0.55 for Eclipse and 0.45 for
ArgoUML. The change coupling measures are often better than the number of changes. In the
case of Eclipse, NOCC is always better, SOC is better for n ≥ 5 and LWSOC for n ≥ 15, while
EWSOC is always worse. For ArgoUML all the change coupling measures have a maximum for
n = 8, which is greater than the correlation of the number of changes. After that, for n > 8 the
correlations rapidly decrease. We do not show the result for Mylyn because the number of high
priority bugs is not large enough to obtain significant correlations.

9.3.2 Discussion

Based on the data presented in Figure 9.3 and Figure 9.4, we derive the following insights.

Change coupling works better than source code metrics. From Figure 9.3 we see that, for
every system, there is a range of values of n in which change coupling measures indeed corre-
late with number of defects. They correlate more than the CK and other object-oriented metrics,
but less than the number of changes. The fact that number of changes correlates with number
of defects was already assessed by previous research [NB05b; MPS08]. One possible reason
why the number of changes correlates more is that this information is defined for every class in
the system, while only some classes have change coupling measures greater than 0. This also
explains why change coupling measures peak at a given index and then decrease in accuracy,
as very few classes have a change history large enough to exceed moderately high thresholds
of co-change. Further, since not all the bugs are related to a change coupling relationship, all
in all the number of changes have an higher correlation with defects. Similar to this situation,
Gyimóthy et al. found that LOC is among the best metrics to predict defects [GFS05], since it is
defined for all entities in the system. In conclusion, we can answer the first question:

Change coupling correlates with defects, more than source code metrics but less than number of
changes.

Change proneness plays a role. Another observable fact in Figure 9.3 is that for ArgoUML and
Mylyn the correlation of the change coupling measures rapidly decreases with n ≥ 5, while for
Eclipse this happens with n ≥ 20. The reason behind this is that Eclipse classes have, on aver-
age, many more changes and more shared transactions than classes in the other two systems. In
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Eclipse the average number of changes per class is 68, while in ArgoUML it is 14.3 and in Mylyn
11.7. The average number of shared transactions per class is 5.3 for Eclipse, 0.37 for ArgoUML
and 0.39 for Mylyn. Since we consider three systems, we cannot derive a general formula, but
limit ourselves to note that the correlation depends on the change proneness of the system. In
short the insight is the following:

The correlation between change coupling measures and defects varies with n. The trend and the
maximum correlation values depend on the software system and, in particular, on its change
proneness.

Change coupling is harmful. The situation in Figure 9.4 is different from the one in Figure 9.3.
The average value of the Spearman’s correlation is lower when considering only major or high
priority bugs than with all the bugs. This is not surprising, since there is a smaller amount of
data and therefore the correlation is less precise. The interesting fact here is the delta between
the number of changes and the change coupling measures: It is lower for major and high pri-
ority bugs, with respect to all the bugs, and it is often negative, i.e., change coupling measures
correlate with number of major/high priority bugs more than number of changes. One possible
explanation is that change coupling can be detected only in the evolution of a system. As such,
this type of dependency is often hidden and might be related to bugs with a high priority or a
high severity. The answer to the second question is then:

On average the correlation between change coupling measures and number of major/high priority
bugs is lower than with all the bugs. For these particular bugs change coupling measures are
always better than code metrics and, in many cases, than number of changes.

Sometimes it is better not to forget the past. One last observation from both Figure 9.3 and
Figure 9.4 is that the correlation for EWSOC is always below the one for LWSOC, and the latter
one is always below NOCC and SOC. From this we infer that “penalizing” couplings in the past
does not work in correlating with number of defects, i.e., couplings in the past also correlate
with defects. EWSOC, which penalizes the past more than LWSOC, correlates less with defects.
The second part of the answer to the first question is:

“Penalizing” change coupling in the past decreases the correlation with number of defects. The
best change coupling metrics are then NOCC and SOC.

9.4 Regression Analysis

The goal of the regression analysis is to answer the following questions:

1. Does the use of change coupling information improve explanative and predictive powers
of bug prediction models based on software metrics?

2. Is the improvement greater for severe bugs?

To answer these questions, we create and evaluate different regression models in which the
independent variables (for predicting) are respectively code metrics, change coupling measures,
number of changes and their combinations, while the dependent variable (the predicted one) is
the number of bugs, the number of major bugs and the number of high priority bugs.
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Once again, we follow the methodology proposed by Nagappan et al. [NBZ06] that we
already used in Chapters 7 and 8. The methodology, detailed in Section 7.2.2, consists in the fol-
lowing steps: Principal component analysis, building regression models, evaluating explanative
power and evaluating predictive power.

However, in the previous two chapters we predicted the number of post-release defects, em-
ulating a real-life scenario. In the following experiments, we consider all the bugs, building
regression models from 90% of the classes (training set) and evaluating them on the remaining
10% (validation set). Even if these settings do not emulate a real-life scenario, we opt for them
for two reasons: First, our goal is comparing regression models to inspect whether change cou-
pling information can improve established defect prediction approaches. Applying the models
on the same dataset, although not emulating real-life settings, achieve our goal. Second, since
we want to study the impact of bug severity on the prediction, we have to perform experiments
considering major or high priority bugs only. Unfortunately, in our dataset, these types of bugs in
a post release period (six months) are not enough to produce significant correlations. Therefore,
we consider the entire history.

9.4.1 Results

Figure 9.5 shows the results of our experiments for Eclipse in terms of explanative power (R2)
and predictive power (Spearman’s correlation). We show the results for the regression models
built using the following sets of variables: (1) source code metrics, (2) code metrics and number
of changes, (3) code metrics and NOCC, (4) code metrics and SOC, (5) code metrics and EWSOC,
(6) code metrics and LWSOC, (7) all NOCC, i.e., the NOCC metrics for each value of n and (8)
all CC measures, i.e., all the measures of change coupling for each value of n. We show the
results only for Eclipse and only for major bugs, since the results for the high priority bugs and
for the other two systems (ArgoUML and Mylyn) are on the same line with the ones presented
in Figure 9.5. We do not show the adjusted R2 values, since it tends to remain comparable to R2.

9.4.2 Discussion

Regression models based on source code metrics and change coupling information have a greater
explanative and predictive power than models based only on code metrics. However, the model
based on code metrics and number of changes has a slightly better prediction power than “all
CC measures” and “NOCC all”, and a slightly worse explanative power than “all CC measures”.
This answers our first question:

Using change coupling information improves explanative and predictive powers of bug prediction
models based on source code metrics. However, it does not yield a significant improvement over
models based on code metrics and number of changes.

When considering only major bugs, the overall performance is lower, but the models based on
change coupling are better than the one based on number of changes. The model based on “all
CC measures” is the best in terms of explanative power, but it also suffers from overfitting, since
its prediction performance is much lower. On the other hand, the model based on “NOCC all” is
the best in terms of prediction (slightly better than number of changes), but not in terms of R2.
We can answer our second question:
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Figure 9.5. Results of the regression analysis for Eclipse

Predicting severe bugs is hard, as the performance of prediction models are, on average, lower
than the ones for all the bugs. Models based on change coupling measures yield better results
than models based on code metrics, and slightly better results than the one based on code metrics
and number of changes.

The conclusions drawn for the correlation analysis are still valid for the regression. First, it
is better not to forget the past, i.e., change coupling measures that penalize past coupling re-
lationships (EWSOC and LWSOC) have bad explanative and prediction power. Second, change
proneness plays a role: The change coupling measures have different trends for different sys-
tems. This is because different systems have different average numbers of transactions and
shared transactions per class. We do not show the regression results for ArgoUML and Mylyn,
but the trends of NOCC, SOC, EWSOC and LWSOC are similar to the ones presented in Figure 9.3
for the correlation analysis.
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9.5 Threats to Validity

Threats to construct validity. We already presented some of these threats in Section 3.2.3,
when describing the limitations of populating Mevo models. Another threat concerns large
commits: We discussed in Section 9.2 how to mitigate it.

Threats to statistical conclusion validity. In our experiments all the Spearman’s correlation
coefficients and all the regression models were significant at the 99% level.

Threats to external validity. In our experiments there are three threats belonging to this cat-
egory: First, we analyzed only three software systems; second, they are all open-source; third,
they are all developed in Java.

9.6 Summary

Change coupling has long been considered a significant issue. However, no empirical study of its
correlation with actual software defects had been done until now. By exploiting the data residing
in Mevo, we performed such a study on three large software systems and found that there was
indeed a correlation between change coupling and defects: The correlation is higher than the
one observed with source code metrics. Further, defects with a high severity seem to exhibit a
correlation with change coupling that, in some instances, is higher than the one with the change
rate of the components. We also enriched bug prediction models based on code metrics with
change coupling information, and the results—in terms of explanative and predictive power—
corroborate our previous findings.

In this chapter we empirically investigated the (negative) impact of change coupling on
software quality, measured with number of defects. In the next chapter, we perform an analogous
study on design flaws to determine their impact on software defects.



Chapter 10

On the Relationship Between Design
Flaws and Software Defects

Over the last years, researchers proposed a variety of approaches to detect source code frag-
ments that are hard to understand, change or maintain. Source code entities that have design
flaws are good candidates, since flaws are known to have a negative impact on quality attributes
[GHJV95]. As a last application of our approach, we want to empirically assess such negative
impact. To this aim, we need to measure software quality and to identify design flaws in the
source code. For the former, we apply the same technique employed in Chapter 9, i.e., we quan-
tify (negative) software quality with number of defects. To identify design flaws, simple source
code metrics are insufficient, because they must be considered and analyzed in the context in
which they appear. For this reason, meaningful metric combinations were devised as so-called
detection strategies [Mar04] and put in the context of design (dis)harmony [LM06].

Researchers thoroughly analyzed design disharmonies: To find good metrics and thresholds
for their classification [Mar04; LM06; SLT06], to propose correction strategies and refactorings
[TSG04; LM06], to visualize them [WL08b], and to put them in relation to code evolvability
[ML06] or change-proneness [KPG09]. Still, the relationship between design flaws and software
defects was not investigated.

By analyzing the data residing in our Churrasco framework, we study this relationship, con-
ducting an extensive experiment on six open-source software systems. First, we examine the
frequency of design flaws in the systems. Then, we analyze the correlation of flaws with post-
release defects. The fact that Mevo models multiple source code versions allows us to study also
the evolution of flaws over time: In particular, we evaluate whether adding flaws to a software
entity will induce bugs in the future.

We conducted our experiments not only analyzing each flaw, per se, but also extracting and
comparing differences between flaws in all the mentioned situations.

Structure of the chapter. In Section 10.1 we introduce detection strategies, the technique we
employ to identify design flaws in software systems. In Section 10.2 we describe our dataset
and experimental setup. We present our set of experiments and discuss their results in Sec-
tion 10.3. Before concluding in Section 10.5, we outline the threats to the validity of this study
in Section 10.4.
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10.1 Design Flaws and Detection Strategies

As opposed to object-oriented metrics [CK94], which are simple measures of size (e.g., lines
of code, number of methods) or complexity (e.g., McCabe cyclomatic complexity) of software,
detection strategies [Mar04] provide a formal method to identify design flaws in a given source
code fragment, also referred to in the literature as “code smells” [FBB+99].

To recognize a number of design flaws, we transform informal design rules, guidelines, and
heuristics [GHJV95; Rie96; FBB+99] into detection strategies, i.e., metrics-based logical con-
ditions that detect violations against design guidelines. We use the catalog of design flaws
described by Lanza and Marinescu [LM06]. We illustrate how we translate informal design rules
into a detection strategy to identify the design flaw called Brain Method, and refer the reader to
[LM06] for details about the other detection strategies.

Example

The Brain Method design flaw refers to a method that tends to centralize the functionality of a
class, in the same way a God Class [Rie96] centralizes the functionality of an entire (sub)system.
It can be informally described by the following rules: (1) It is excessively large, (2) it has many
conditional branches, computed using the McCabe’s cyclomatic complexity, (3) it has a deep
nesting level, and (4) it uses many1 variables. These rules can be transformed into the detection
strategy depicted in Figure 10.1.

MAXNESTING ≥ SEVERAL

Method has deep nesting

NOAV > MANY

Method uses many 
variables

LOC > HIGH (Class) / 2

Method is excessively large

CYCLO ≥ HIGH

Method has many 
conditional branches

AND Brain Method

Figure 10.1. The Brain Method detection strategy

Filtering conditions are expressed in terms of metrics (the left part of the expressions) and
related to thresholds (the right part of the expressions). Lanza and Marinescu computed the
values of the thresholds by measuring 45 Java systems of different sizes and from different
domains [LM06].

1“Many” refers to a number higher than a human can keep in short-term memory [Pin97], i.e., 6 - 9.
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CYCLO—also known as McCabe’s Cyclomatic Complexity—is the number of linearly-independent
paths through an operation. MAXNESTING represents the maximum nesting level of control
structures within an operation. NOAV is the total number of variables directly accessed from the
measured operation. Variables include parameters, local variables, instance variables and global
variables. “HIGH” refers to a threshold for methods, while “HIGH (Class)” refers to a threshold
for classes.

This detection strategy, functioning on any Java software system, produces a set of candidate
methods exhibiting symptoms of the Brain Method design flaw. For example, in one version of
Lucene we were able to detect 120 brain methods.

In addition to Brain Method, we consider the following method level design flaws:

1. Feature Envy: Methods more interested in the data of other classes than that of their own
class[FBB+99], by accessing it directly or via accessors.

2. Intensive Coupling: Methods intensively coupled to other methods located in few other
classes. The communication between the client method and (at least one of) its provider
classes is excessively verbose.

3. Dispersed Coupling is complementary to the previous design flaw, and it refers to a method
excessively tied to many other methods in the system dispersed among many classes. A
single method communicates with an excessive number of classes, whereby the communi-
cation with each of the classes is not intense.

4. Shotgun Surgery denotes that a change in a single method implies many changes to many
different methods and classes [FBB+99]. This design flaw deals with strong afferent (in-
coming) coupling, thus concerning the coupling strength and dispersion.

10.2 Experimental Setup

We perform our experiments on the six Java systems listed in Table 10.1. For each system, we
create a Mevo model including versioning system information, bug data and bi-weekly source
code snapshots as FAMIX models. Once created all the FAMIX models—one every two weeks—
we employ detection strategies on them to identify design flaws. The result is a list of method
level design flaws that each class contains. We conduct our study at the class level since classes
are the cornerstone of the object-oriented paradigm, and developers perform maintenance and
refactoring tasks mostly at this level.

Table 10.1. Software systems used for the experiments

System Description
Lucene High-performance, full-featured text search engine library.
Maven Tool for build automation and management of Java projects.
Mina Network application framework.
Eclipse CDT C/C++ Integrated Development Environment (IDE) for Eclipse.
Eclipse PDE UI Models, builders and editors to facilitate plug-in development in Eclipse.
Equinox Plugin system for the Eclipse project.
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For each system, Table 10.2 shows the period of time considered,2 the number of versions
included in the model, the size of the systems in terms of average number of classes, average
number of design flaws and total number of bug references reported in the considered time
period. Since the number of classes and the number of design flaws vary across system versions,
we show average numbers over all the considered versions. Bug references indicate all the links
to classes that a bug can have: When a single bug is linked with multiple classes, the number of
bugs is one, while the number of bug references is equal to the number of linked classes.

Table 10.2. The data set used for the experiments

System
ApacheApacheApache EclipseEclipseEclipse

System
Lucene Maven Mina Eclipse CDT Eclipse PDE Equinox

Time period Jan 1, 2005
Oct 8, 2008

Jan 1, 2005
Feb 18, 2009

Jan 14, 2006
Dec 10, 2008

Jun 24, 2006
Feb 25, 2009

Jan 1, 2005
Sep 11, 2008

Jan 1, 2005
Jun 25, 2008

Last release 2.4.0 2.0.10 2.0.0-M4 5.0.2 3.4.1 3

Versions 99 108 76 70 97 91

Bug references 
(tot in history)

982 1,500 629 923 4,953 2,043

Classes (avg) 513.5 156.2 108.6 217.8 1,170.5 242.6

Brain method 
(avg)

106.9 24.8 1.6 6.9 29.1 35.5

Dispersed 
coupling (avg)

14.2 2.9 1.6 0.4 63.0 31.8

Feature envy 
(avg)

943.7 74.7 70.1 90.6 1,006.8 450.8

Intensive 
coupling (avg)

0.9 6.6 1.3 3.4 1.5 4.3

Shotgun 
surgery (avg)

123.7 20.7 19.6 31.5 117.5 36.7

Once we extracted the design flaw data for all the versions of a system (all the FAMIX mod-
els), for each flaw we build a design flaw matrix F , similar to the matrix created to compute
the churn and the entropy of source code metrics (cf. Section 7.3.5). The design flaw matrix F ,
exemplified in Figure 10.2, has the following properties:

• Each column represents a (bi-weekly) version of the system.

• Each row represents a class.

2The end of the time period always corresponds to a major release of the software.
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Class Foo at version V2
has 1 brain method

Class Bar Class Bar at version Vn
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14 days
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System version

Class Boo

9 3 5...

nil

Figure 10.2. An example of design flaw matrix for brain methods

• The value of a cell at row r and column c is equal to the number of instances of the design
flaw in the class represent by r at the version represent by c.

• Since some classes exist in some versions but not in others, the set of rows is composed
of all the classes existing in at least one version. If a class at row r does not exist at the
version in column c, we set the value of the cell c, r to nil.

10.3 Experiments

Before studying the relationship between design flaws and software defects, we want to examine
the frequencies of different flaws in different systems. In particular, we aim at answering the
following question: Are there design flaws that are more frequent in all the systems, or is each
system different with respect to design flaws frequencies?

Table 10.2 provides a first indication that there are patterns of design flaws frequencies in the
analyzed systems. However, we cannot compare the numbers of flaws in Table 10.2, as systems
have different number of classes. To better investigate our question, we compare the average
number of flaws per class (which is also an average over all the versions).

Figure 10.3 shows the average number of design flaws per class, grouped by flaw: Feature
envy is the most frequent in all the systems, followed by shotgun surgery, which is stable for all
the systems. Intensive coupling is relatively low for all systems, while dispersed coupling and
brain methods vary.

To analyze the relationship between design flaws and software defects we perform two sets
of experiments:

1. Correlation analysis: We study the correlation between number of post-release defects per
class and class-level design flaws.

2. Delta analysis: We investigate whether increments of flaws correlate with defects, within
a given time window.
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Figure 10.3. Average number of design flaws per class, grouped by flaw

10.3.1 Correlation Analysis

We found that some design flaws are more frequent than others. Now we want to study the
correlation between number of design flaws and number of post-release defects at the class
level. Our goal is to answer the following questions: Do design flaws correlate with post-release
defects? Does any flaw consistently correlate more than others in all systems?

In our analysis we consider post-release defects, i.e., defects reported after the considered
version (release) of the system. For example, if we consider class Foo at version x , post-release
defects are defects linked to Foo reported after x and within a certain time window. As Zimmer-
mann et al., we consider a period of six months for post-release defects [ZPZ07]. We consider
post-release defects because we want to investigate whether the presence of design flaws gener-
ate bugs in the future.

To compute the correlation we need two lists: The first one contains the number of design
flaws for each class, and the second one the number of post-release defects. The first list corre-
sponds to a column of the matrix F , while the second is mapped to a column in an analogous
matrix B. In B, rows represent classes, columns represent versions and the value of a cell at
position c, r represents the number of post-release defects relative to the version c of the class r.
To compute the number of post-release defects, we filter the extracted bug data according to the
bug reporting dates.

To measure the correlation we could use either the Pearson’s linear correlation coefficient,
which should be used to linear relationships, or the Spearman’s rank correlation coefficient,
suitable for general associations [Tri06]. To choose which measure is more appropriate we
studied the distribution of the data, which resulted to be highly skewed with respect to a normal
distribution. In fact, most of the classes have very few or zero design problems and post-release
defects. For this reason we opted for the Spearman’s coefficient, as it is recommended with data
that is skewed or that contains outliers [Tri06].



177 10.3 Experiments

...1

3

7
...

3

8

2
...

11

4

4
...

1

8

3
... Design flaw matrix M

Post-release defects 
matrix B

...

ρ1 ρ2 ρ3 ρn... Correlation vector

2

1

2
...

1

2

13
...

0

3

0
...

1

2

0
...

Figure 10.4. Computing Spearman’s correlations over multiple versions of a system

Figure 10.4 shows how we compute the correlation over all the versions of a given system,
producing a correlation vector that represents the correlation trend over time. We create the
vector by computing the Spearman’s coefficient on pairs of columns from the design flaws and
bugs matrices (F and B).

Figure 10.5 shows, for each software system in our dataset, plots of the correlation vectors for
all the considered design flaws. Interruptions in the lines mean that in the corresponding version
of the system the Spearman’s correlation coefficient was not significant. We see that every system
is different and there is no flaw that is consistently more correlated with post-release defects
across the systems. Moreover, not even within systems design flaws are consistently more or
less correlated with respect to each other: They oscillate over different versions. To obtain a
better grasp of how much flaws are correlated with defects, we only consider strong correlation,
i.e., the ones having a Spearman’s coefficient above 0.4, which is the threshold for considering a
correlation to be strong in fault prediction studies [ZN08].

Figure 10.6 shows the percentage of versions with a strong correlation, by design flaw and
by software system. The percentages are computed from the correlation vectors as number of
versions with a strong correlation (greater than 0.4) divided by total number of versions. We
see that there are two types of systems: (1) Systems where no design flaw is strongly correlated
with defects (PDE and Lucene) and (2) systems in which one design flaw is frequently strongly
correlated with defects (Equinox, CDT, and Maven). Mina does not belong to any group, as some
design flaws rarely have a strong correlation with post-release defects, but none of them is much
more frequent than the others (as in Equinox, CDT, and Maven).

From the correlation analysis we draw the following conclusions:

• Design flaws correlate with post-release defects, but not strongly in all the analyzed sys-
tems.

• There is no design flaw that consistently correlates more than others in all the systems.

• In some systems there is no design flaw that strongly correlates with defects.

• Some systems are characterized by a particular design flaw, i.e., one flaw is strongly corre-
lated with defects much more frequently than all the others.
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Figure 10.5. Spearman’s correlations between number of design flaws and number of post-
release defects over multiple versions of software systems
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post-release defects

10.3.2 Delta Analysis

In the second part of our experiments we want to investigate whether an addition of design flaws
in a class generates bugs. We aim at answering the following questions: Do design flaws additions
correlate with software defects? Is there a design flaw for which additions consistently correlate more
than addition of any other design flaw? What is the relationship between “flaws-defects” correlation
and “flaws additions-defects” correlation?

To study design flaws additions, we need to detect, extract and measure these addition
events. We do so by analyzing each row in the design flaw matrix F , as depicted in Figure 10.7.
Given a row, which includes the number of design flaws in all the considered versions of a class,
we first compute the deltas between each consecutive pair of versions: A positive delta repre-
sents an addition of design flaw in the given class. Then, given the deltas row, we group all the
sequences of positive values, where a sequence indicates a “longer” addition (see Figure 10.7).

To analyze the relationship between the detected sequences and software defects, we count
the number of bugs (linked to the considered class) reported from the beginning to the end of
the sequence plus a time window of 90 days.3 In case the sequence is composed of a single delta,
the beginning of the sequence coincides with its end. We finally build two lists that we use to
compute the correlation, where each element represents a design flaw addition (a sequence):
The first list measures the total addition value, while the second one counts the number of
defects reported during the addition period (the sequence) over a time window of 90 days.

Figure 10.8 shows, for each system and for each flaw, the Spearman’s correlations between
the two lists (the total addition values and the number of reported defects). For some flaws in
some systems, not enough addition events were detected to obtain a significant correlation: In
these cases we do not show the correlation. Looking at Figure 10.8 we conclude that:

• Additions of design flaws correlate with software defects, i.e., introducing a design flaw in
a class is likely to generate bugs that affect the class. However, this does not hold for all
design flaws in all software systems.

3To be conservative, we use a time window which is half of the post-release defect time window.
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Figure 10.8. Spearman’s correlations between additions of design flaws and number of gener-
ated defects

• There is no design flaw addition which consistently correlates more than others in all the
systems.

Comparing correlations of defects with absolute numbers of design flaws and design flaw
additions, we notice the following facts: In PDE and Lucene no design flaw is strongly correlated
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with defects (see Figure 10.6), but at the same time, adding any design flaw in these systems is
likely to introduce bugs, as the correlations between flaw additions and defects is relevant for
all the design flaws (with the exception of feature envy in PDE). On the other hand, for systems
characterized by a particular flaw, an addition of that flaw is not likely to introduce defects or,
at least, not as much as other flaws. For example, in Maven brain method is far more frequently
correlated with defects than other flaws; however, an addition of brain methods in Maven is not
as likely to introduce defects as an addition of shotgun surgery. The same holds for Equinox with
shotgun surgery and CDT with intensive coupling.

10.3.3 Wrapping Up

The goal of our experiments was to answer a number of questions concerning the frequency of
design flaws in the analyzed systems, their correlations with software defects and whether their
introduction to software entities is likely to generate bugs. The experiments showed that feature
envy is the most frequent design flaw, but it is not the most correlated with software defects.
Our correlation analysis revealed that none of the analyzed design flaws is more correlated
with defects than others consistently across systems. Similarly, adding design flaws is likely to
introduce defects in many (but not all) software systems, but no design flaw addition correlates
with defects more than the others consistently across systems.

Moreover, we found out that some software systems are characterized by a specific design
flaw “f” (different from system to system), in the sense that in these systems the flaw f is strongly
correlated with defects much more frequently (across versions) than all the others. Interestingly,
by performing deltas analysis, we discovered that an addition of f in these systems is not likely
to introduce defects or, at least, not as much as other flaws that are less correlated with defects
than f. A possible explanation of this finding is that, since in these systems the flaw f is very
frequent, developers know how to deal with it without generating bugs. We also found systems
in which no design flaw is strongly correlated with defects. Adding any flaw in such systems is
likely to introduce defects.

10.4 Threats to Validity

Threats to construct validity. We already discussed some of these threats in Section 3.2.3.
Another construct validity threat, concerning design flaws, is that we defined them using the de-
tection strategies proposed by Marinescu [Mar04] to detect violations against design guidelines.
These guidelines are based on thresholds statistically assessed on 45 Java systems. Although
such a comprehensive number of software systems—from various projects and domains—was
considered, they do not cover all the possible cases, and this can vary the effectiveness of the
thresholds in identifying design flaws.

Threats to statistical conclusion validity. In our experiments we use the Spearman’s correla-
tion coefficient to evaluate the relationship between design flaws and software defects, and all
the correlations are significant at the 0.01 level.

Threats to external validity. In our experiments, there are two threats regarding to this cate-
gory: First, we considered open-source software systems only. Differences between open-source
and industrial development could change our results. However, as also reported by Lanza and



182 10.5 Summary

Marinescu [LM06], design flaws also appear in industrial software systems and can be effectively
detected using the employed detection strategy. Second, we only considered software systems
developed in the Java programming language. This affects the generalization of our findings.
However, having the possibility to use the same parser for all the case studies ensures that all
the code metrics are defined identically for each system.

10.5 Summary

Design flaws are known to have a negative impact on quality attributes of software systems,
for example in their flexibility, or maintainability. In this chapter, we performed an extended
analysis of the relationship between design flaws and software defects: We studied design flaws
and software defects in six different software systems developed by independent development
teams and emerging from the context of two unrelated communities (Apache and Eclipse).

Looking at the frequencies of design flaws in these projects, we discovered that feature envy
is consistently the most recurring design flaw. The feature envy disharmony refers to methods
that access more the data of other classes, than the data of the class containing it. It might be
a sign that the method was misplaced, and that it should be moved to another class. The most
significant aspect about feature envy is that it is a sign of an improper distribution of a system’s
intelligence.

Afterward, our analysis—spreading over the data from a minimum of two years in the history
of the chosen systems—showed that design flaws do correlate with software defects. Also, no
flaw consistently correlates more than others across all the different systems. Finally, we found
that an increase in the number of design flaws is likely to generate bugs, and still, there is
no design flaw addition that consistently correlates more than others across the totality of the
systems.

To make our experiments extendible and reproducible by other researchers, our datasets,
and in particular the design flaws and post-release defects matrices, are publicly available at:
http://www.inf.usi.ch/phd/dambros/flaws-defects/.

http://www.inf.usi.ch/phd/dambros/flaws-defects/
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Chapter 11

Conclusion

In the light of the ubiquity and complexity of today’s software systems, it is no wonder that
software maintenance and evolution takes up the most part of the cost of a software system.
Understanding the evolution of large systems is a challenging problem, due to the sheer size
of data to be analyzed. In this context, researchers devised approaches that mine software
repositories to analyze software evolution, with two main goals: inferring causes of problems in
a system and predicting its future.

To be able to analyze a software system, one first needs to create a model of it, according to
the goal to be achieved with the analysis, e.g., predicting the location of future defects or detect-
ing critical software components. By reviewing the state of the art in software evolution analysis,
we learned that most approaches address a specific maintenance problem, and model software
evolution considering only one evolutionary aspect. These approaches, and the infrastructures
that implement them, cannot be adapted to tackle different maintenance problems.

In this dissertation, we introduced an approach that takes an integrated view of software
evolution, combining evolutionary information about source code and software defects. Our
thesis is that this integrated approach supports an extensible set of software maintenance activ-
ities. To this aim, we devised an integrated meta-model of evolving software systems, and we
implemented it in an extensible framework.

To validate our thesis, we created and evaluated, on top of our approach, seven software
evolution analysis techniques. We presented all the techniques, showing that they support vari-
ous maintenance tasks, targeted at inferring the causes of problems and predicting the future of
software systems.
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11.1 Contributions

During the course of this dissertation, we made a series of contributions to the state of the art in
modeling and analyzing software evolution. We summarize the major ones in the following.

11.1.1 Modeling and Supporting Software Evolution

Limitations of existing software evolution analysis approaches come from development tools
and practices that, although unsatisfying for today’s development, still represent de-facto stan-
dards. Therefore, to better understand these limitations, in Chapter 2 we looked at the history
of software evolution, providing a historical perspective on our work. Subsequently, we sur-
veyed software evolution analysis techniques and, based on their limitations, we identified four
requirements for an integrated approach able to support various software maintenance tasks:

R1. Integration of different evolutionary aspects.

R2. Flexibility with respect to creating new techniques on top of the approach and extending
the meta-model.

R3. Modeling of software defects as first class entities.

R4. Replicability of the analyses performed and availability of the data.

In Chapter 3, we introduced Mevo, an integrated meta-model of evolving software, and Chur-
rasco, an extensible framework that implements Mevo and serves as a basis to create analysis
techniques and tools. Mevo integrates versioning system, source code and defect information
(R1), and models defects as first class entities taking their histories into account (R3). Churrasco
provides a flexible meta-model support and enables the creation of analysis tools on top of it
(R2). The framework also offers a web portal from which all the models used in our analyses
and experiments are accessible, thus facilitating replicability (R4).

11.1.2 Analyzing Software Evolution to Infer Causes of Problems

In the second part of the dissertation, we presented three visualization techniques—built on
top of Churrasco—aimed at detecting causes of problems in a software system. The techniques
focus respectively on the evolution of source code, the evolution of software defects, and their
co-evolution.

Analyzing change coupling information. In Chapter 4, we focused on the evolution of source
code, and especially on a particular aspect of it, namely change coupling. Change coupling is
the implicit dependency among software artifacts that frequently change together. We presented
the Evolution Radar, a visual approach to study change coupling information—extracted from
our Mevo meta-model—at different levels of abstraction. We applied the visualization to two
large open-source software systems, and we conducted a user experiment with a developer of a
Smalltalk system. Through these series of experiments, we illustrated how the Evolution Radar
supports a number of maintenance activities, such as restructuring, re-documentation, change
impact estimation, spotting design issues, identifying reengineering candidates and understand-
ing module dependencies.
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Analyzing the evolution of software defects. The focus of Chapter 5 was the evolution of soft-
ware defects. We introduced the System Radiography and the Bug Watch views, two interactive
visualizations to analyze bug repositories at different levels of granularity. The System Radiogra-
phy supports the analysis of a bug database as a whole, showing how open bugs are distributed
in a system and highlighting critical components, i.e., the ones affected by the most severe bugs.
The Bug Watch view targets the inspection of one or few system’s components, facilitating the
characterization of bugs—based on their life cycle—and the identification of critical ones. By
applying the visualizations to the bug repository of Mozilla—consisting of more than a quarter
million bugs—we provided anecdotal evidence of the usefulness of the approach.

Analyzing the co-evolution of source code and bugs. After studying the evolution of code
and defects in isolation, in Chapter 6 we looked at their co-evolution. We proposed the Discrete
Time Figure, a visualization technique to analyze such co-evolution at any level of granularity.
Based on the visualization, we formally defined a catalog of co-evolutionary patterns that can be
automatically detected in a system, such as day-fly, addition of features, bug fixing, etc. We em-
ployed Discrete Time Figures on three open-source software systems, detecting co-evolutionary
patterns and characterizing the components of the systems.

11.1.3 Analyzing the Evolution of a Software System to Predict Its Future

In the third part of the dissertation, we presented four studies on software defects: Two of
them dealt with how to improve defect prediction techniques, and the other two concerned the
relationships of software defects with change coupling and design flaws. The presented studies
either regarded directly predicting the future of a system (e.g., defect prediction), or investigated
relationships that—once understood—can support the prediction.

Predicting defects with the evolution of source code metrics. Defect prediction is a very
active research field, experiencing a growing interest by the software engineering community.
Defect prediction concerns the resource optimization problems: Knowing where future defects
will be would allow a project manager to optimize the maintenance resources. When survey-
ing defect prediction approaches in Chapter 2, we observed that a baseline to compare these
approaches does not exist.

In Chapter 7, we introduced such a baseline in the form of a publicly available benchmark,
composed of hundreds of versions of five software systems. Moreover, we proposed two novel
approaches, based on the evolution of source code metrics extracted from our Mevo meta-model.
We then evaluated these novel techniques on our benchmark, together with a selection of rep-
resentative approaches from the literature. The results showed that our techniques are the best
performing ones, as they gave consistently good results across all five systems.

Improving defect prediction with information extracted from e-mail archives. In Chapter 3,
we argued that the Mevo meta-model is extensible, and that the Churrasco framework supports
its extensibility. As a proof of concept, in Chapter 8 we extended Mevo to model e-mail informa-
tion.

Based on the extended meta-model, we devised several metrics that measure the popularity
of source code artifacts within discussions taking place in e-mail archives. Then, we investigated
whether these popularity metrics correlate with defects, and whether they could be used to
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improve existing bug prediction approaches. Our experiments on four open-source software
systems provided positive answers for both investigations.

Analyzing the relationship between change coupling and software defects. Already when
surveying approaches for change coupling analysis (cf. Chapter 2) and when presenting the
Evolution Radar (cf. Chapter 4), we observed that change coupling has long been considered a
significant issue. However, no empirical study of its correlation with a tangible effect of degraded
software quality—as for example software defects—had been done until now. In Chapter 9, we
conducted such a study, providing empirical evidence—on three open-source software systems—
that such a correlation exists. Further, we showed that change coupling data can be used to
improve existing defect prediction models based on change and source code metrics.

Analyzing the relationship between design flaws and software defects. Design flaws are
known to have a negative impact on software quality attributes, such as flexibility or main-
tainability. However, it is not clear what the actual impact of design flaws on measurable effects
of low quality—such as software defects—is, and whether some flaws are more defect prone
than others. In Chapter 10, we analyzed the relationship between a catalog of design flaws and
software defects on six open-source software systems. We also studied the evolution of the flaws
over multiple versions of the systems, to investigate whether adding design flaws is likely to
generate defects. Our experiments showed that the presence and the addition of design flaws
significantly correlate with software defects. However, there was no empirical evidence of one
flaw being more defect prone than the others.

11.1.4 Tools

Software evolution analysis is unavoidably tied to tools, since they are necessary to cope with
the sheer amount of data that characterizes large and long-lived software systems. As a tech-
nical contribution, we implemented a number of tools to support the research presented in this
dissertation.

Churrasco is an extensible framework that implements the Mevo meta-model and, through
a dedicated data interface, serves as a basis for the other analysis tools. Churrasco features a
web interface to create models of software systems, hiding the data retrieval and processing
tasks from the users. The tool also supports collaborative software evolution visualization and
analysis (discussed in Appendix A).

The Evolution Radar visualizes change coupling information at different levels of abstraction.
We implemented two versions of the Evolution Radar: as a stand-alone tool, and as an IDE
enhancement.

Bug’s Life is a visualization tool that supports the analysis of software bugs in the large, visu-
alizing an entire bug repository, and in the small, rendering individual bugs.

BugCrawler visualizes the co-evolution of source code and bugs at various granularity levels.
The tool features also a query engine that detects a catalog of co-evolutionary patterns in the
visualized software entities.
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Pendolino is a scriptable data analysis tool that computes and exports a variety of metrics and
properties about Mevo models (e.g., code metrics, design flaws, change coupling measures, etc.)
in a format compatible with Matlab and other statistical tools.

11.2 Limitations and Future Work

During the work on this dissertation, we encountered promising future research directions.
Some of them are ideas on how to overcome limitations of our approach. In the following, we
outline possible future work, discussing also—when appropriate—the shortcomings that origi-
nate them.

Extending the meta-model. The Mevo meta-model combines versioning system, source code
and defect information. In our dissertation we extended it to model also e-mail data extracted
from mailing list archives. However, there are also other kinds of artifacts that contain infor-
mation concerning the evolution of software systems, such as design documents, developers’
discussions taking place in chats, debugging information recorded by IDEs [KM08], fine-grained
versioning information [Rob08], built system data [Ada09], test case reports. We envision en-
riching our meta-model with some of these pieces of data. The challenge in this context will be
how to reliably link them to source code entities.

Improving the quality of the data. In Section 3.2.3 we discussed the limitations of our ap-
proach to populate models of evolving software systems. These limitations include: (1) Not all
links between software defects and source code artifacts are detected; (2) we do not handle
renaming events in the history of software artifacts, i.e., a renaming is seen as an addition and
a deletion; (3) the data residing in Bugzilla repositories contain some noise [AADP+08]; (4)
we deal with all SCM transactions in the same way, but some of them commit one conceptual
change, while others groups several changes. We plan to devise new heuristics and algorithms to
mitigate the impact of these shortcomings, as for example the approach proposed by Bachmann
and Bernstein to improve the linking between SCM transactions and a bug reports [BB09].

Replicating the experiments on a nearly-ideal dataset. As mentioned above, in our approach
not all links between bugs and source code artifacts are detected, i.e., the links are only a frac-
tion of all existing links. Bird et al. argued that this subset is not a fair representation of the
full population, thus inducing a bias that might threaten the results obtained using the subset
[BBA+09]. Later, Nguyen et al. investigated whether the bias exists also in a nearly-ideal dataset
(the IBM Jazz software project), where the links between bugs and code are enforced by strict
development guidelines, and not inferred by subsequent analysis. Based on their experiments,
the authors conjectured that the bias is likely to be a symptom of the underlying development
process instead of being due to the linking technique [NAH10]. We want to replicate the experi-
ments presented in the third part of the dissertation on the IBM Jazz software project, to inspect
whether the bias exists in our dataset and, in the positive case, assess its impact on our results.

Generalizing our approach. We applied our approach to open-source software projects only.
However, development practices in industrial settings may differ and conduct to different com-
portments in the developers, and thus to different results. Moreover, all the experiments pre-
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sented in the third part of the dissertation (predicting the future) were performed on Java sys-
tems. The language might have an impact on the results, as communities using different lan-
guages can have different developer cultures. On the other hand, these choices have also some
benefits. Using open-source systems allowed us to share our datasets, thus facilitating the repli-
cation of our experiments. Using the same language enabled the usage of the same parser for
all the case studies, avoiding threats due to behavior differences in parsing, a known issue for
reverse engineering tools [KSS02]. Nevertheless, to corroborate our findings, we plan to apply
our analysis techniques on industrial systems as well as systems written in other object-oriented
languages.

Conducting user studies. In most of the cases, we were the only users of our tools. Since these
tools are designed to support analysts, project managers and developers in performing software
maintenance tasks, we should involve such practitioners is assessing the tools usefulness and
usability. We want to conduct a series of user studies to carry out such an assessment.

Analyzing other evolutionary relationships. In Chapters 4 and 9 we studied change coupling,
the implicit and evolutionary dependency of software artifacts that frequently change together.
We define another implicit and evolutionary relationship, the one between two or more software
artifacts that in their histories were affected, either at the same time or in different time periods,
by the same bug. We name this kind of relationship “bug sharing”: We plan to analyze it and
compare it with change coupling.

Predicting defects with co-evolutionary patterns. In Chapter 6 we formally defined a catalog
of co-evolutionary patterns that characterize the co-evolution of source code and bugs. Since
the patterns can be automatically detected, we want to investigate whether they can be used to
improve existing defect prediction techniques.

Exploiting author information. The Mevo meta-model includes author information, such as
who performs a commit, creates a bug report, is in charge of fixing a bug, is in charge of verifying
a fix for a bug, etc. We plan to explore how such information can be exploited, since with our
approach we did so only to a limited extent.

Integrating the visualization tools. Our visualization tools—the Evolution Radar (cf. Chap-
ter 4), Bug’s Life (cf. Chapter 5) and BugCrawler (cf. Chapter 6)—although being implemented
on top of the same framework (Churrasco), are independent. We want to integrate them to
allow one navigating among the various views the tools offer, as for example “jumping” from a
Bug Watch view of a bug to a Discrete Time Figure of the component that bug affects.

Visualizing fine grained change coupling data. The Evolution Radar—presented in Chap-
ter 4—visualizes change coupling information at the file and module granularity. We want to
extend the tool to visualize finer grained change coupling [ZWDZ05; YMNCC04; BZ06], i.e., at
the method level. The challenge in this context will be how to render huge amounts of data,
while keeping the visualization intelligible and useful.
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11.3 Closing Words

In this dissertation, we showed that integrating evolutionary information about source code and
software defects leads to novel techniques for both software evolution analysis and supporting
maintenance tasks. The evolution of software, however, is not only defects revolving around
the changing code: It is a holistic process with a variety of facets, which leaves traces in distinct
repositories. New repositories open different perspectives on the evolution but, as we did with
e-mail data, they must always be integrated with the source code—the “place” where software is
changed.

Our thesis, while enlightening the central role of such integration, is only a first step towards
capturing software evolution as a holistic phenomenon.
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Appendix A

Supporting Collaborative Software
Evolution Analysis

In our dissertation, we presented a software evolution analysis framework called Churrasco. We
discussed how Churrasco supports a number of analysis techniques, aimed at inferring causes of
problems in software systems and at predicting their future. In this appendix, we present another
feature of Churrasco: the collaboration support. The framework provides a set of collaborative
visual analyses and supports collaboration by allowing users to annotate the analyzed data.

The need of collaboration in software development is receiving more and more attention.
Tools that support collaboration, such as Jazz for Eclipse [Fro07], were only recently introduced,
but hint at a larger current trend. Just as software development teams are geographically dis-
tributed, consultants and analysts are too. Specialists in different domains of expertise should
be allowed to collaborate without the need of being physically present together. Because of
these reasons, we argue that software evolution analysis should be a collaborative activity. As a
consequence, software evolution analysis tools should support collaboration, by allowing different
users, with different expertise, from different locations, to collaboratively analyze a system.

Moreover, we argue that software evolution analysis tools should possess the following char-
acteristics, related to collaboration:

• Accessibility. Researchers developed a plethora of evolution analysis tools and environ-
ments. One commonality among many prototypes is their limited usability, i.e., often
only the developers themselves know how to use them, thus hindering the development
and/or cross-fertilization of novel analysis techniques. There are some notable excep-
tions, such as Moose [DGN05], which were used by a large number of researchers over
the years. Researchers also investigated ways to exchange information about software
systems [KZK+06; TDD00], approaches which however are seldom followed up because
of lack of time or manpower. We argue that software evolution tools should be easily
accessible: In a collaborative settings, where the participants are likely to have different
hardware configurations running different operating systems, the analysis tool should be
usable without any strings attached.

The Churrasco framework provides an easily accessible web interface both to import soft-
ware systems (create models) and to analyze them by means of web-based visualizations.
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• Incremental storage of results. Results of analyses and findings on software systems pro-
duced by tools are often written into files and/or manually crafted reports, and are there-
fore of limited use. A different approach would be to incrementally and consistently store
analysis results back into the analyzed models: This would allow researchers to develop
novel analyses that exploit from the results of a previous analysis (cross-fertilization of
ideas/results). It would also permit asynchronous collaboration, in which the participants
do not have to perform the analysis at the same time. Finally, it would serve as a basis
to create a benchmark for analyses targeting the same problem, or to combine techniques
targeting different problems.

Churrasco stores the findings into a central database to create an incrementally enriched
body of knowledge about a system, which can be exploited by subsequent users.

Structure of the appendix. In Section A.1 we discuss how Churrasco supports collaboration,
detailing the web-based visualizations offered by the tool. We then provide an example of a
collaborative session and describe two collaboration experiments performed with Churrasco (cf.
Section A.2). In Section A.3 we discuss pros and cons of Churrasco, and examine tool building
issues. We survey related work in Section A.4, and conclude in Section A.5.

A.1 Churrasco’s Collaboration Support

In Section 3.4.1 we presented Churrasco and its architecture, focusing on the components to
import software projects, process the data and instantiate Mevo models. Here we discuss in
detail Churrasco’s components that support collaboration, which were only briefly introduced in
Section 3.4.1. Such components are:

• The Visualization module supports software evolution analysis by creating and exporting
interactive web-based visualizations.

• The Annotation module supports collaborative analysis by enriching any entity in the sys-
tem with annotations. It communicates with the web visualizations to depict the annota-
tions within the visualizations.

A.1.1 The Visualization Module

The visualization module offers the following interactive visualizations that support software
evolution analysis: The Evolution Radar, the System Complexity and the Correlation view.

The Evolution Radar supports software evolution analysis by depicting change coupling infor-
mation. We comprehensively presented this visualization technique in Chapter 4.

The System Complexity View supports the understanding of object-oriented systems, by en-
riching a simple two-dimensional depiction of classes and inheritance relationships with software
metrics (see left part of Figure A.1). By default, the size of the nodes is proportional to the num-
ber of attributes (width) and methods (height), while the color represents the number of lines
of code. This mapping can be changed from the Churrasco’s web interface, by assigning any
software metric, from a rich catalog, to the width, height and color of the nodes. The goal of the
visualization technique is to provide clues on the complexity and structure of a system.
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Figure A.1. System Complexity and Correlation View principles

The Correlation View shows all the classes of a software system in a two-dimensional space,
using a scatterplot layout and mapping up to five software metrics on them: on the vertical and
horizontal positions, on the size and on the color (see right part of Figure A.1). The default
mapping is the following: The nodes’ coordinates represent the number of attributes (x) and
methods (y), the color represents the number of lines of code, while the size of the nodes is fixed.
As for the System Complexity view, the mapping can be changed at any time using Churrasco’s
web interface. The Correlation view is useful to understand the correlation between different
metrics in a software system and to detect outliers, i.e., entities having metric values completely
different with respect to the majority of the entities in the system.

In the collaboration experiments discussed later, we provide examples of Evolution Radar
and System Complexity visualizations, but not of Correlation view. We give an example of this
view here, depicted in Figure A.2. Nodes represent classes of the ArgoUML software system,
where the x position is proportional to the number of lines of code, the y is proportional to the
number of post-release bugs and the color maps the number of methods. Such a choice of met-
rics mapping can be useful to understand whether larger classes (higher number of lines of code)
generate more bugs. This correlation does not hold in the case of ArgoUML (see Figure A.2).
Moreover, we spot some outliers in the view: The one marked as “A”, which has an outstanding
number of bugs, and the ones marked as “B”, with an outstanding number of lines of code.

The Correlation view and the System Complexity visualization are created using the Mon-
drian framework [MGL06] (residing in Moose) and the Episode framework [Pri07] (residing in
Churrasco’s visualization module). To make the visualizations interactive within the web portal,
Episode attaches Ajax callbacks to the figures.

Figure A.3 shows an example of a System Complexity visualization rendered in the Churrasco
web portal. The main panel is the view where all the figures are rendered as SVG graphics.
The figures are interactive: Clicking on one of them will highlight the figure (red boundary),
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Figure A.2. A Correlation view applied to the ArgoUML software system. Nodes represent
classes, nodes’ position represents number of lines of code (x) and number of post-release bugs
(y), and nodes’ color maps the number of methods.

generate a context menu and show the figure details (the name, type and metric values) in the
figure information panel on the left. Under the information panel Churrasco provides three other
panels useful to configure and interact with the visualization:

1. The metrics mapping configurator, which allows the user to customize the view by chang-
ing the metrics mapping.

2. The package selector, which allows the user to select, and then visualize, multiple packages
or the entire system.

3. The regular expression matcher, with which the user can select entities in the visualization
according to a regular expression.

A.1.2 The Annotation Module

The idea behind Churrasco’s annotation module is that each model entity can be enriched with
annotations to (1) store findings and results incrementally into the model and to (2) let differ-
ent users collaborate in the analysis of a system in parallel. Annotations can be attached to any
visualized model entity, and each entity can have several annotations. An annotation is com-
posed of the author who wrote it, the creation timestamp and the text. To support persistent
annotations, we extended the Mevo meta-model: Adding annotations results in enriching Mevo
models. Persistence is provided by the Meta-base component (see Appendix B).

When the user selects the menu action “Show annotations” an additional panel is rendered
at the top left corner of the web page (above the recent annotation panel). The panel shows
all the annotations for the selected entity and allows the user to delete (only) his/her annota-
tions. Selecting the “Add annotation” menu item will result in displaying another panel (again
in the top left corner) that allows the user to write and add new annotations to the selected
entity. Since the annotations are stored in a centralized database (enriching Mevo models), any
new annotation is immediately visible to all the people using Churrasco, thus allowing different
users to collaborate in the analysis. Churrasco features three other panels aimed at supporting
collaboration:
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Figure A.3. A screenshot of the Churrasco web portal showing a System Complexity visualiza-
tion of ArgoUML

1. The “Recent annotations” panel displays the most recent annotations inserted, together
with the name of the annotated entity, and—by clicking on it—the user can highlight the
corresponding figure in the visualization.

2. The “Participants” panel lists all the people who annotated the visualizations, i.e., people
collaborating in the analysis. When one of these names is selected, all the figures anno-
tated by the corresponding person are highlighted in the view, to see which part of the
system that person is working on.

3. The “Create pdf report” panel generates a pdf document containing the visualization and
all the annotations referring to the visualized entities. Figure A.4 shows a modified excerpt
(modified to fit in the page) of such a report: In the visualization part, the entities having
at least one annotation are highlighted in red, and the corresponding annotations are
listed, together with the author and date information.
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Figure A.4. An excerpt of a report generated by Churrasco. The entities having one or more
annotations are highlighted in red, and the corresponding annotations are provided.

A.2 Collaboration in Action

We show how Churrasco supports collaborative software evolution analysis through one simple
example scenario, presented next, and two collaboration experiments with respectively 8 and 4
participants.

A.2.1 Analyzing ArgoUML

We use the following simple scenario to exemplify Churrasco’s usage for collaborative analysis:
Marco and Michele, working on different machines in different locations, study the evolution of
ArgoUML, a UML modeling tool composed of about 2000 Java classes. The users first create a
Mevo model by indicating the URL of the ArgoUML SVN and Bugzilla repositories in the importer
page of Churrasco. Once the model is created and stored in the Churrasco’s database, they
start the analysis with a System Complexity view of the system. Each user renders the view
in his web browser, and attaches annotations to interesting figures in the visualizations. The
annotations are immediately visible to the other user on the left side of the browser window (in
the annotations panel).

While Michele is analyzing the entire system, Marco focuses on the Model package, which
contains several classes characterized by large number of methods and many lines of code. The
entities annotated by Marco in the fine-grained view are then visible to Michele in the coarse-
grained System Complexity. Marco has the advantage of a more focused view, while Michele sees
the entire context. Figure A.5 shows Marco’s view on the left, while Michele’s one is depicted
on the right. Marco selected the FacadeMDRImpl class (highlighted in red in Marco’s view), and
is reading Michele’s comments about that class (highlighted in blue in Michele’s view). The
following are two examples of collaboration:

1. Marco, focusing on the Model package, annotates that the class FacadeMDRImpl shows
symptoms of bad design: It has 350 methods, 3400 lines of code, only 3 attributes, and
it is the only implementor of the Facade interface. Michele adds a second annotation that
Marco’s observation holds also with respect to the entire system, and that FacadeMDRImpl
is the class with the highest number of methods in the entire system.

2. Marco sees that several classes in the Factory hierarchy implement the Factory interface,
and also inherit from classes belonging to the AbstractModelFactory hierarchy. This is not
visible in Michele’s view (where Factory and AbstractModelFactory are highlighted in blue),
who discovers that fact by highlighting the entities annotated by Marco and by reading his
annotations.
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Figure A.5. The web portal of Churrasco visualizing System Complexities of the Model package
of ArgoUML on the left, and the entire ArgoUML system on the right

Both the participants now want to find out whether these design problems have always
been present in the system. They analyze the system’s history in terms of its change coupling
using the Evolution Radar. This visualization is time dependent, i.e., different radar views are
used to represent different time intervals. Figure A.6 shows, on the left, an Evolution Radar
visualization corresponding to the time interval October 2004 – October 2005 and, on the right,
the radar corresponding to October 2005 – October 2006. They both represent the dependencies
of the Diagram module (displayed as a cyan circle in the center) with all the other modules of
ArgoUML, by rendering individual classes.

Marco is looking at the time interval 2004 – 2005 (left part of Figure A.6). He selects the
class UMLFactoryMDRImpl (marked in red), belonging to the Model module, because it is the
closest to the center (i.e., highest coupling with the Diagram module in the center) and because
it is large (the size maps the number of changes in the corresponding time interval). Marco
attaches to the class the annotation that it is potentially harmful, given the high coupling with a
different module (Diagram), with respect to the one the class belongs to (Model).

In the meantime, Michele is looking at the time interval 2005 – 2006 (right part of Fig-
ure A.6). He highlights the classes annotated by Marco and sees the UMLFactoryMDRImpl class.
In Michele’s radar, the class is not coupled at all with the Diagram module, i.e., it is at the bound-
ary of the view (marked in red). Therefore, Michele adds an annotation to the class, saying
that it is probably not harmful, since the coupling decreased over time. After reading this com-
ment, Marco goes back to the System Complexity view, to see the structural properties of the
class in the system. The UMLFactoryMDRImpl class (marked in the left part of Figure A.5) has 22
methods, 9 attributes and 600 lines of code. It implements the interfaces AbstractUmlModelFac-
toryMDR and UMLFactory. After seeing the class in the System Complexity, Marco adds another
annotation saying that the class is not harmful after all.

These pieces of information can then be used by other users in the future. For example,



202 A.2 Collaboration in Action
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Figure A.6. Evolution Radars of ArgoUML

suppose that Romain wants to join the analysis with Marco and Michele, or to start from their
results. He can first see on which entities the previous users worked on, by highlighting them,
and then read the corresponding annotations to obtain the previously acquired knowledge about
the system.

This simple scenario shows how:

1. The knowledge about a system, gained in software evolution analysis activities, can be
incrementally built.

2. Different users, from different locations, can collaborate.

3. Different visualization techniques can be combined to improve the analysis.

A.2.2 First Collaboration Experiment: Analyzing JMol

The previous example showed that Churrasco supports collaborative analysis. However, the
example is hardly a collaborative experiment, because (1) there were only two participants
(2) who were the developers of the tool, (3) possessing prior knowledge about the analyzed
software system. Therefore, we decided to perform a collaboration experiment—in a more
realistic settings—with the following goals: (1) Evaluate whether Churrasco is a good means to
support collaboration in software evolution analysis, (2) test the usability of the tool, and (3)
test the scalability of the tool with respect to the number of participants.

We performed the experiment in the context of a university course on software design and
evolution. The experiment lasted three hours: During the first 30 minutes we explained the
concept of the tool and how to use it, in the following two hours (with a 15 minutes break in the
middle) the students performed the actual experiment, and in the last 15 minutes they filled in
a questionnaire about the experiment and the tool. The participants were: five master students,
two doctoral students working in the software evolution domain and one professor. The master
students were lectured on reverse engineering topics before the experiment.
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The task consisted in using the System Complexity and Correlation views and looking at the
source code to (1) discover classes on which one would focus reengineering efforts (explaining
why), and (2) discover classes with a big change impact and explain why. The target system
chosen for the experiment was JMol,1 a 3D viewer for chemical structures, consisting of ca. 900
Java classes. Among the participants only one possessed some knowledge about the system.

JMolViewer

Viewer

Graphics3D

Eval

JMolSimpleViewer

JMol
PngEncoder

BondIterator

Figure A.7. A System Complexity of JMol. The color denotes the amount of annotations made
by the users. The highlighted classes (green boundaries) are annotated classes.

Figure A.7 shows a System Complexity of JMol in which nodes’ size maps number of at-
tributes (width) and methods (height) and nodes’ color represents the amount of annotations
they received, i.e., number of annotations weighted with their length. We see that the most an-
notated class is Viewer, the one with the highest number of methods (465). However, we can also
see that not only the big classes (with respect to methods and/or attributes) were commented,
but also very small classes.

Table A.1 lists a subset of the annotations made by the users during the experiment. In
the assigned time, the participants annotated 15 different classes for a total of 31 annotations,
distributed among the different participants, i.e., everybody actively participated in the collab-
oration. The average number of annotations per author was 3.87, with a minimum of 2 and a
maximum of 13.

The annotations were also used to discuss about certain properties of the analyzed classes. In
most of the cases, the discussion consisted in combining different pieces of knowledge about the
class (local properties as number of methods with properties of the hierarchy with dependency,
etc.).

At the end of the experiment all participants but one filled in a survey about the tool and the
collaboration experience. Table A.2 reports the results of the survey. In the cases where the sum
of the answers is not seven, a participant did not indicate an answer.

Although not a full-fledged experiment, it provided us with information about our initial
goals: The survey shows that the participants found the tool easy to use, collaboration important
in reverse engineering and Churrasco as a good means to support collaboration (for all the

1JMol is available at: http://jmol.sourceforge.net

http://jmol.sourceforge.net


204 A.2 Collaboration in Action

Table A.1. A subset of the annotations made on Jmol. NOA stands for number of attributes and
NOM for number of methods.

Class NOA NOM Annotations
JmolSimple-
Viewer

0 8 “This is a strange hierarchy. There is only one subclass per superclass
(all with many method and few attributes).”

JMolViewer 0 135 “Strange: 134 abstract methods, only 1 concrete, only 1 subclass.”
Viewer 54 465 “This class seems to be the “thing” in the system, at least in terms

of functionality”, “Strong dependency with Eval.”, “High fan out (25)
and many LOC (>1k).”, “High number of access to foreign data.”

Eval 34 198 “This class should probably be broken down.”, “Very strong depen-
dency with Viewer.”

JMol 60 25 “This class has the largest fan out (78). Probably part of the core of
the system.”, “High coupling, low cohesion”, “13 protected methods
and no child!”

PngEncoder 23 26 “17 protected attributes, completely useless since there’s no child!”
BondIterator 5 5 “There are ca. 6 classes with Iterator logic. The implementation is

strange. I would expect them to be in some hierarchy.”
Graphics3D 101 166 “This can be probably broken down. It’s an implementation of a 3d

engine.”

Table A.2. A subset of the results from the questionnaire, using a Likert Scale [Lik32]
(SA=strongly agree, A=agree, N=Neutral, D=disagree, SD=strongly disagree)

Statement SD D N A SA
Churrasco is easy to use 1 3 2
System Complexity view is useful 2 5
Correlation view is useful 1 1 5
Churrasco is a good means to collaborate 7
Collaboration is important in reverse engineering 1 5 1

participants the experiment was the first reverse engineering collaboration experience). Another
result is that they found the provided visualizations useful to achieve the given tasks. Churrasco
scaled well with eight people accessing the same model, on the web portal, at the same time,
without any performance issue.

A final comment given by the users during an informal conversation after the experiment, is
that they had fun in the collaborative session: They especially liked to wait for annotations from
other people, on the entity they already commented, or to see what was going on in the system
and which classes were annotated, to also personally look at them.

A.2.3 Second Collaboration Experiment: Collaborative Restructuring

The purpose of the first experiment was to perform a preliminary evaluation of Churrasco’s
usability and whether users would find Churrasco a good means to collaborate. In our second
experiment we wanted to simulate a more structured form of collaboration, where users do not
have all equal roles.

We performed the experiment in the context of a university course on software engineering,
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with a setup very similar to the one of the previous experiment. This time, the participants were
four bachelor students with little knowledge about reverse engineering. The experiment took
place during the last week of a project in which all students had developed a web application in
Smalltalk during six weeks. During the last week of the project, the students could not add new
features to the system, but they could only restructure / refactor it to improve its design and
code quality.

The task that the students had in the experiment was to identify which parts of the system
should be refactored, using the System complexity and Correlation views in Churrasco. The
students had different roles in the collaboration: One acted as a leader, responsible to analyze the
system, by selecting classes that he thought were candidates for refactoring; the other students
would check in detail whether the classes in question needed to be refactored or not.

Using the annotations, the leader could also ask questions that the followers then answered.
Typical questions were: “What is the responsibility of this class?”, “Can we remove this class?”,
“These hierarchies seem to be duplicated, can we merge them?”,“Why is this class in this hierar-
chy? Should it not be a subclass of that class?” etc.

The target software system was composed of 166 classes and 983 methods, for a total of ca.
5,000 lines of Smalltalk code.

Table A.3. A subset of the annotations made on the Smalltalk web application

Class ElementModel
What is the difference between Element Model and Element? Are both hierarchies replicated?
One is the model that manages the functionalities of the element, the other one manages the displaying
of the element (it is a proxy pattern).
One is for the layout behavior while the other one is for the widget behavior.

Class WBLBorderLayoutModel
This layout seems to have more behavior than the others, even though it has the same number of
attributes. Maybe it is doing too much. Should it be a composite layout?
It has a lot of complex operations that being detached can raise the complexity much more. As you
say, it has functionalities that can be distributed in more than one class.
The layout is complex. Dividing it into several classes will require too much time and effort.

Table A.3 shows a subset of the annotations made by the users during the experiment, the
ones written for a couple of classes. These two groups of annotations exemplify how the collab-
orative session was performed: The leader was asking questions about the design of classes and
hierarchies, and the other students were answering these questions.

During the experiment, the participants annotated 11 different classes for a total of 27 an-
notations, 9 written by the leader and 18 by the other students. Since the participants knew
the system, they were faster in writing annotations with respect to the participants of the first
collaboration experiment.

As in the previous experiment, at the end of the collaborative session the participants filled
in a survey about the tool and the collaboration experience. Table A.4 presents a subset of the
results. The survey shows that the participants found that collaboration helped them in under-
standing the system, and the used methodology (with the leader) was useful to structure the
collaborative effort. Moreover, the use of annotations eased the task of selecting potential can-
didates for refactoring. Another result is that the students found that the collaborative support
provided by Churrasco has an added value.
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Table A.4. A subset of the results from the questionnaire, using a Likert Scale (SA=strongly
agree, A=agree, N=Neutral, D=disagree, SD=strongly disagree)

Statement SD D N A SA
Churrasco is a good means to collaborate 1 3
Collaboration helped me in understanding the system 3 1
The proposed methodology (leaders) helps in structuring the col-
laborative effort

3 1

Reading other users’ annotations eases the given tasks 2 2

1-2 3-4 5-6 7-8 9-10
Quantify (1-10) the added value of the collaborative support pro-
vided by the tool

2 2

A.3 Discussion

The main benefits of Churrasco are its accessibility and flexibility. The features of the frame-
work can be accessed through a web browser: (1) The importers to create and populate Mevo
models, (2) the System Complexity and Correlation views, to support the understanding of a sys-
tem’s structure and (3) the Evolution Radar visualization, to study the evolution of the system’s
modules in terms of change coupling.

The visualizations are interactive, and they allow users to inspect the entities represented by
the figures, to apply new visualizations on-the-fly from the context menus, and to navigate back
and forth among different views. The framework can be extended, with respect to the Mevo
meta-model (as done for example in Chapter 8) and with respect to the visualizations.

A.3.1 Tool Building Issues

We decided to develop Churrasco as a web application, because it eased implementing it as a
collaborative platform. However, developing a web-based tool that supports scalable and inter-
active visualizations raised a number of issues, related to interacting, updating, and debugging.

Interacting. Supporting interaction through a web browser is still a non-trivial task, and even
supposedly simple features, such as context menus, must be implemented from scratch. In our
Churrasco tool, we implemented the context menus as SVG composite figures, with callbacks
attached, which are rendered on top of the SVG visualization. Moreover, it is hard to guarantee
a responsive user interface, since every web application introduces a latency due to the transport
of information.

Updating. The standard way of rendering a web visualization is that every time something
changes in the page, the whole page is refreshed to show the updated version. In the context
menu example, whenever the user selects a figure, the page changes because a new figure ap-
pears, and therefore the page needs to be refreshed to show the menu. This introduces latencies
that make the web application unusable, when it comes to rendering very large SVG files. For
this reason, we implemented many actions that do not require a complete re-rendering of a page
using Ajax requests. Examples of such actions are: rendering of context menus, highlighting
figures, displaying figure information, displaying and adding annotations.
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Debugging. A barrier to develop web applications is the lack of support for debugging. Even
if there are some applications such as Firebug,2 providing HTML inspection, Javascript debug-
ging and DOM exploration, the debugging support is not comparable with the one given in
mainstream integrated development environments such as Eclipse.

A.3.2 Wrapping Up

All in all, while building Churrasco, we learned that creating a web application that supports
interactive visualizations implies a number of technological challenges. On the other hand,
web applications introduce a number of novel ways to interact with systems—as for example
collaborative software analysis—that will open up new research directions.

A.4 Related Work

We are not aware of software visualization tools which support collaboration. However, a num-
ber of approaches support web-based software evolution visualization and analysis.

Sarma et al. introduced Tesseract [SMWH09], a Flash-based tool that provides interactive vi-
sualizations of relationships between files, developers, bugs, and e-mails. Tesseract features four
cross-linked displays that show: (1) the project activity over time with respect to the number of
commits and number of communications; (2) a graph of change coupling dependencies among
files, (3) a graph of communication dependencies among developers and (4) the defects affect-
ing the considered files. The main difference between Churrasco and Tesseract resides in the
problem they address: While Churrasco is aimed at understanding a system’s evolution, the goal
of Tesseract is to support the analysis of the socio-technical relations between code, developers,
and issues.

Another web-based visualization tool is the Java applet version of Shrimp3 [SM95]: It dis-
plays architectural diagrams using nested graphs where graph nodes embed source code frag-
ments. The tool is fully interactive, providing animated panning, zooming, and fisheye-view
actions. While Shrimp supports the exploration of software architecture, Churrasco focuses on
software evolution analysis.

Beyer and Hassan proposed the Evolution Storyboards [BH06], a visualization technique that
offers dynamic views. The storyboards, rendered as SVG files (thus visible in a web browser),
depict the history of a project using a sequence of panels, each representing a particular time
period in the life of a software project. This visualization is only partially interactive, i.e., it
only shows the names of the entities represented by the SVG figures. In contrast, the views
offered in the Churrasco web portal are fully interactive, providing context menus, spawning
and navigation capabilities.

Lungu et al. presented a web-based approach to visualize entire software repositories [LLGH07].
Their technique, validated on Smalltalk repositories, focuses on understanding the structure of
the organization behind the repositories, by studying the interaction among the developers.
They also provide views to see the evolution of the repositories over time. Both the approaches
are fully interactive and web-based, but while Lungu’s approach focuses on the entire repos-
itory evolution with coarse-grained views, Churrasco targets single projects with fine-grained
visualizations.

2Firebug is available at http://getfirebug.com
3Available at http://www.thechiselgroup.com/shrimp

http://getfirebug.com
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Mancoridis et al. introduced REportal, a web portal for the reverse engineering of software
systems [MSC+01]. REportal allows users to upload their code (Java or C++) and then to
browse, analyze and query it. These services are implemented by reverse engineering tools
developed by the authors over the years. REportal supports software analysis through browsing
and querying, whereas Churrasco supports the analysis by means of interactive visualizations.

Nentwich et al. presented BOX, a portable, distributed and interoperable approach to browse
UML models [NEFZ00]. BOX translates a UML model represented in XMI into VML (Vector
Markup Language), which can be directly displayed in a web browser. BOX enables software
engineers to access and review UML models, without the need to purchase licenses of tools that
produced the models. While BOX is focused on design documents, such as UML diagrams, in
Churrasco we focus on the history and structure of software systems.

Finnigan et al. developed the Software Bookshelf, a web-based paradigm for the presentation
and navigation of information representing large software systems [FHK+97]. The Software
Bookshelf integrates various parsing and analysis tools in the backend, providing a means to
capture, organize, and manage information about software systems. Differently from Churrasco,
the goal of the Software Bookshelf is to support the re-documentation and migration of legacy
systems.

A major difference between all the mentioned approaches and Churrasco is that these tech-
niques support single user software evolution analysis, while Churrasco supports collaborative
analysis.

A.5 Summary

The need of collaboration is receiving an increasing importance in software development. We
argue that collaboration has also an important role in software evolution analysis. In this ap-
pendix, we presented how our Churrasco framework supports collaborative software analysis, by
means of interactive visualizations and persistent annotations. Two major features of Churrasco,
related to collaboration, are:

• Accessibility. The tool is fully web-based, i.e., the entire analysis of a software system—
from the initial model creation to the final study—can be performed from a web browser,
without having to install or configure any tool.

• Modeling of results. Churrasco relies on a centralized database and supports annotations.
Thus, the knowledge of the system, gained during the analysis, can be incrementally stored
on the model of the system itself.

We showed, through a couple of collaboration experiments with respectively eight and four
participants, that Churrasco is a good means to support collaborative software evolution analysis.
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The Meta-Base

The Meta-base [DLP07b] is the core module of the Churrasco framework [DL08b], which pro-
vides flexibility and persistence to any meta-model in general, and to our Mevo meta-model in
particular. As Churrasco, the Meta-base is developed in Smalltalk.

The tool takes as input a meta-model described in EMOF and outputs a descriptor, which
defines the mapping between the object instances of the meta-model, i.e., the model, and ta-
bles in the database. EMOF (Essential Meta Object Facilities) is a subset of MOF,1 a meta-
meta-model used to describe meta-models. The Meta-base uses a Smalltalk implementation of
EMOF called Meta and it ensures persistence with the object-relational module GLORP [Kni00]
(Generic Lightweight Object-Relational Persistence).

The Meta-base provides flexibility by dynamically and automatically adapting to any pro-
vided meta-model: To do so, it generates descriptors of the mapping between the database and
the meta-model. This allows us to dynamically both modify and extend our meta-model.

The tool can be used to exchange models (or only parts of them) through a database, thus
supporting interoperability.

B.1 Object Persistence

The Meta-base relies on GLORP2 for object persistence. GLORP is a powerful object-relational
mapping layer for Smalltalk. It allows us to define the mapping between Smalltalk objects and
tables/rows in a relational database (DB from now on). Once this mapping is defined, objects
can be read from and written to the DB in a completely transparent way, without having to write
any SQL statement.

Example

We want to define the mapping for simplified versions of FAMIXClass and FAMIXMethod. FAMIX-
Class has a name, belongs to a package and has a collection of methods, while FAMIXMethod has
just a name.

1MOF and EMOF are standards defined by the OMG (Object Management Group) for Model Driven Engineering. For
more details about MOF and EMOF consult the specification at: http://www.omg.org/mof/

2Available at http://www.glorp.org
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To define the mapping, we need to create a new class, i.e., FamixDescriptorSystem, inherit-
ing from Glorp.DescriptorSystem. In this class we add methods (1) to define the structure of the
database table corresponding to the FAMIX class and method (see Listing B.1) and (2) to define
the mapping between the tables and the classes (see Listing B.2).

1 tableForFAMIXClass : aTable
2 aTable createFieldNamed : ’ Id ’ type : p lat form s e r i a l .
3 aTable createFieldNamed : ’Name ’ type : ( p lat form varChar : 50) .
4 aTable createFieldNamed : ’ PackagedIn ’ type : ( p lat form i n t e g e r ) .
5

6 tableForFAMIXMethod : aTable
7 aTable createFieldNamed : ’ Id ’ type : p lat form s e r i a l .
8 aTable createFieldNamed : ’Name ’ type : ( p lat form varChar : 50) .
9 aTable createFieldNamed : ’ BelongsTo ’ type : ( p lat form i n t e g e r ) .

Listing B.1. The code snippet to specify the structure of the database tables corresponding to
FAMIXClass and FAMIXMethod

1 descriptorForFAMIXClass : aDesc r ip to r
2 | t |
3 t := s e l f tableNamed : ’ C la s s ’ .
4 tMethod := s e l f tableNamed : ’ Method ’ .
5 t A t t r i b u t e := s e l f tableNamed : ’ A t t r i b u t e ’ .
6 tPackage := s e l f tableNamed : ’ Package ’ .
7 aDesc r ip to r t a b l e : t .
8 " d i r e c t mappings "
9 aDesc r ip to r addMapping : ( DirectMapping from : #dbId to : ( t fieldNamed : ’ Id ’ ) ) .

10 aDesc r ip to r addMapping : ( DirectMapping from : #name to : ( t fieldNamed : ’Name ’ ) ) .
11 " one−to−one mapping "
12 ( aDesc r ip to r newMapping : OneToOneMapping)
13 attr ibuteName : #packagedIn ;
14 r e f e r e n c e C l a s s : FAMIXPackage ;
15 mappingCr i ter ia :
16 ( Join from : ( t fieldNamed : ’ PackagedIn ’ ) to : ( tPackage fieldNamed : ’ Id ’ ) ) .
17 " one−to−many mapping "
18 ( aDesc r ip to r newMapping : OneToManyMapping)
19 attr ibuteName : #methods ;
20 r e f e r e n c e C l a s s : FAMIXMethod ;
21 j o i n : ( Join from : ( t fieldNamed : ’ Id ’ ) to : ( tMethod fieldNamed : ’ BelongsTo ’ ) ) .
22 ^aDesc r ip to r
23

24 descriptorForFAMIXMethod : aDesc r ip to r
25 | t |
26 t := s e l f tableNamed : ’ Method ’ .
27 aDesc r ip to r t a b l e : t .
28 " d i r e c t mappings "
29 aDesc r ip to r addMapping : ( DirectMapping from : #dbId to : ( t fieldNamed : ’ Id ’ ) ) .
30 aDesc r ip to r addMapping : ( DirectMapping from : #name to : ( t fieldNamed : ’Name ’ ) ) .
31 ^aDesc r ip to r

Listing B.2. The code snippet to define the mappings between the classes FAMIXClass and
FAMIXMethod and the database tables/rows
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Listing B.2 includes three kinds of mapping: direct, one-to-one and one-to-many.

Direct Mapping (Listing B.2 row 9, 10, 29 and 30). It expresses simple relationships between
instance variables and table columns. It is used when the “type”3 of the instance variable
is directly supported by the DB, for example for Integer, Text, Date, Timestamp, etc.

One-to-one Mapping (Listing B.2 row 12–16). It describes the relationship between FAMIXClass
and FAMIXPackage. This mapping, declared in the FAMIXClass descriptor, defines the fol-
lowing properties:

• The attribute name, i.e., the name of the instance variable getter.

• The reference class: It specifies the class of the objects, and therefore the corre-
sponding table in the DB. In the considered case the class is FAMIXPackage, which
corresponds to the Package table (not shown for brevity).

• The join expression: It defines which columns of the two tables are linked. GLORP
uses this information to create the appropriate SQL join query to fetch the data from
the DB and create the objects.

One-to-many Mapping (Listing B.2 row 18–21). It expresses that a FAMIXClass can have sev-
eral FAMIXMethods. The structure of the mapping is similar to the one-to-one mapping,
with two differences. First, the attribute name refers to a collection of objects instead
of a single object. All these objects have to be instances of the class “referenceClass”
(FAMIXMethod). Second, the data will be written in the table corresponding to the ref-
erence class (FAMIXMethod), instead of the current class (FAMIXClass). This is because
each row in the FAMIXMethod table refers to a single row in the FAMIXClass table (the con-
tainer class), whereas each row in the FAMIXClass table can refer to multiple rows in the
FAMIXMethod table.

A last type of mapping, not used in the code snippet, is many-to-many. It expresses the most
generic relationship by means of a link table. If two classes have this kind of relationship, the
relationship itself is stored in a separated link table in the DB.

What about Inheritance?

We want to add to our simplified FAMIX meta-model a superclass of FAMIXClass, namely FAMIX-
AbstractNamedEntity, which has a name as instance variable. When adding this superclass, we
also remove the name instance variable from the FAMIXClass class, since it is inherited from
FAMIXAbstractNamedEntity.

GLORP provides two techniques to manage inheritance: filtered—exploited in the Meta-
base—and horizontal. In the filtered inheritance all the classes are represented in a single table,
with a discriminator field for which subclass they are. The table has the union of all possible
fields for all classes. In the horizontal inheritance each concrete class is represented in its own ta-
ble. Each table duplicates the fields that are in common between the concrete classes. Figure B.1
shows the two approaches for our examples.

With horizontal inheritance (Figure B.1(a)) the name column is duplicated in both tables;
With filtered inheritance (Figure B.1(b)) the PackagedIn value is nil for the AbstractNamedEntity
EntityA and there is the “Class” identifier column.

3To use GLORP we have to assume that an instance variable is always of the same class, called type.
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AbstractNamedEntity

Id Name

1 EntityA

Class

Id Name PackagedIn

1 ClassA PackageA

(a) Horizontal Inheritance

AbstractNamedEntityAndClass

Id Name PackagedIn Class

1 EntityA - FAMIXAbtractNamedEntity

2 ClassA PackageA FAMIXClass

(b) Filtered Inheritance

Figure B.1. Types of inheritance in GLORP

Reading & Writing

Once we defined the mapping between the tables and the objects, i.e., we completed the descrip-
tor class, reading and writing objects is straightforward. The code snippet depicted in Listing B.3
reads all the FAMIXClass objects from a DB, modifies them and stores them back in the DB.

1 f amixC las ses := s e s s i o n readManyOf : FAMIXClass .
2 " the FamixClass o b j e c t s are modif ied "
3 s e s s i o n r e g i s t e r A l l : f amixC las ses .

Listing B.3. Reading and writing objects from/to the DB

The variable “session” is an object storing the connection with the DB. It is also possible to
retrieve only the objects satisfying a given condition, as shown below:

1 f amixC las ses := s e s s i o n readManyOf : FAMIXClass
2 where : [ : each | each i s A b s t r a c t ] .

When we read a FAMIXClass from the DB, we retrieve—on demand—all the classes which
have a relationship with it (in our example FAMIXMethod and FAMIXPackage). This means that the
message “readManyOf:” sent to the session object retrieves FAMIXClasses only, not FAMIXMethods
and FAMIXPackages. If we send the getter message “methods” or “packagedIn” to a FAMIXClass
object, the collection of FAMIXMethod objects or the FAMIXPackage object are dynamically read
from the DB.
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B.2 Generating Descriptors with the Meta-base

The Meta-base takes as input a meta-model described in Meta and outputs a GLORP class de-
scriptor, which defines the mapping between the object instances of the meta-model, i.e., the
model, and the database. Figure B.2 shows how the Meta-base works.

Meta-base 
descriptor 
generator

Model
(e.g. FAMIX of Azureus)

Meta-model
(e.g. FAMIX)

Description in Meta

Database

Input

Output GLORP mapping
descriptor

Read
Write

Meta-base 

Figure B.2. Generating and using GLORP descriptors with the Meta-base

Using the Meta-base is straightforward. Suppose we have a meta-model described in Meta (a
Smalltalk implementation of EMOF): To create the GLORP class descriptor with the Meta-base,
we can use the following code snippet:

1 c l a s s e s := OrderedCol lec t ion with : ClassA with : ClassB . . .
2 ^ClassDBDescr ip torGenerator uniqueInstance
3 c r e a t e C l a s s D e s c r i p t o r F o r C l a s s e s : c l a s s e s
4 named : ’ De s c r i p to r ’ in : aPackage .

This code generates the descriptor class named “Descriptor,” located in the “aPackage” pack-
age. The Meta-base uses the generated descriptor to define the mapping between the meta-
model and the database. To get a connection with the database—which adheres to the mapping—
we use the code below:

1 db := MetaDBBridge uniqueIns tance .
2 db d e s c r i p t o r C l a s s : De s c r i p to r .
3 db log in : (( Login new)
4 username : ’ user ’ ; password : ’ pass ’ ;
5 connec tS t r ing : ’ da tabaseServerLocat ion ’ ;
6 database : PostgreSQLPlatform new; y o u r s e l f ) .

Once we created the the database connection, we can generate the tables on the database (if
the database is empty) with:

1 db c rea teTab le s

and read/write objects of the model with:

1 someClasses := db s e s s i o n readManyOf : ClassA .
2 someClasses addAl l : (db s e s s i o n readManyOf : ClassB ) .
3 " someClasses are modif ied "
4 db s e s s i o n r e g i s t e r A l l : someClasses .
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B.3 Example

We present a simple example which shows how the Meta-base supports inheritance and all types
of relationships (direct, one-to-one, one-to-many and many-to-many).

0..1 1 1 0..*

11 0..*0..*

Passport
number
owner
expireDate

Person
name
age
passport
subscriptions

Subscription
number
name
owner
issuedDate

StudentId
id
student

Student
studentId
school
enrolExams

Exam
name
enroledStudents

Figure B.3. The UML class diagram of our example

Figure B.3 shows the UML class diagram of an example meta-model, while the code snippet
below shows part of its Smalltalk EMOF description (the classes Person and Passport).

1 Person>>metamodelAge
2 (̂EMOF. Proper ty name : #age type : Number)
3 Person>>metamodelName
4 (̂EMOF. Proper ty name : #name type : S t r i ng )
5 Person>>metamodelPassport
6 (̂EMOF. Proper ty name : #passpor t
7 oppos i te : #owner type : Passpor t )
8 Person>>metamodelSubscription
9 (̂EMOF. Proper ty name : #s u b s c r i p t i o n oppos i te : #owner

10 type : Subsc r ip t i on m u l t i p l i c i t y : #many )
11 Passport>>metamodelExpireDate
12 (̂EMOF. Proper ty name : #expireDate type : Date )
13 Passport>>metamodelNumber
14 (̂EMOF. Proper ty name : #number type : Number)
15 Passport>>metamodelOwner
16 (̂EMOF. Proper ty name : #owner
17 oppos i te : #passpor t type : Person )

Once we defined the meta-description—as shown in the code snippet—we can generate the
GLORP descriptor, read and write object instances of the meta-model from and to the database
as previously described. Figure B.4 shows a screenshot of some database tables automatically
generated and populated.
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Person
dbid school studentid passport age name class

1
2
3
4
5
6

UZH
USI
NULL
NULL
NULL
Politecnico

NULL
NULL
NULL

2
3

1

4
5
1
6
2
3

22
20
27
28
31
18

Student
Student
Person
Person
Person
Student

Anna Cazzulani
Giorgio Tiepoli
Peppe Castiglia
Michele Vaaanzo
Jhonny Bravo
Carmelo Varicella

dbid personid examid
1
2
3
4
5
6

2
1
6
2
6
1

4
4
1

2
3

1
7 6 2

PersonExamLink
dbid id student

1
2
3

1
3
2 2

6
1

StudentId
dbid name

Exam

1
2
3

Calcolus
Algebra
Greek

4 Physics

Figure B.4. Examples of generated and populated database tables

B.4 Summary

The Meta-base provides flexibility and persistence to any meta-model described according to
the EMOF specification. It supports interoperability, as models—or just model entities—can be
exchanged through a database.

The Meta-base takes as input a meta-model description and automatically generates the
object persistence descriptor, i.e., the mapping between the objects (instances of the meta-model)
and the generated database tables. The Meta-base manages direct, one-to-one, one-to-many and
many-to-many relationships among meta-model entities. It also supports inheritance between
meta-model classes by means of filtered inheritance.
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