
BugCrawler: Visualizing Evolving Software Systems

Marco D’Ambros and Michele Lanza
Faculty of Informatics

University of Lugano, Switzerland

Abstract

Software evolution is aimed at analyzing and under-
standing the present state of a software system and at pre-
dicting its future development. This knowledge supports re-
verse engineering activities since it allows the analyst to
infer causes of problems in the system and to detect compo-
nents which need to be restructured. However, effectively
using evolutionary information is challenging because it
typically comes in large amounts, especially when several
years of evolution are considered. Techniques are needed
to break down the data quantity and complexity.

BugCrawler is a language independent tool which sup-
ports software evolution and reverse engineering1. It is
based on a combination of software metrics and interac-
tive visualizations. BugCrawler integrates structural infor-
mation computed from the source code with evolutionary
information retrieved from CVS log files and Bugzilla prob-
lem reports. It has been validated on several large projects.

1 Principles

BugCrawler supports the analysis of the evolution of
software systems by showing them under different perspec-
tives [1]. It provides visualizations targeted at answering
reverse engineering questions such as:

• Commit information: Which are the parts of the sys-
tem with the most intense development? Which are
the stable/dead parts of the system? Which parts have
grown/shrunk?

• Author information: How many developers worked
on the entity? How was the effort distributed among
them? Is there an “owner” of the entity?

• Bugs: Are there components affected by many bugs?
Which are the bugs affecting many components?

1The tool is a major extension of CodeCrawler [5]. The main difference
is that CodeCrawler supports reverse engineering by visualizing a single
version of a system. BugCrawler supports software evolution by showing
all historical information together with the last version of the system.

• Conceptual entities: How has the entity evolved over
time? When was it introduced in the system? When
did it generate many bugs? When did it have intense
development? Which phases did it go through?

• Logical coupling: Which artifacts are most coupled?

BugCrawler provides visualizations “in the large” and
“in the small”. Visualizations in the large are used to obtain
an overview of the system in terms of modules, modules
evolution over time and module dependencies. The user
can then use visualizations in the small to study the internal
structure of individual modules, going from directories to
single commits and bugs. The views in the small cover evo-
lutionary aspects like effort distribution among developers
and over time, stability/instability of components, etc.

In [3] we present a list of visualizations supporting the
reverse engineering of a system. We also discuss a method-
ological approach describing how to use, combine and in-
terpret the views to answer the questions mentioned above.

2 BugCrawler at Work

Figure 1 shows the three main parts of the tool. The
toolbar (annotated with “A”) contains the most important
actions such as creating/spawing the views, interacting with
the view (cut/copy/paste figures, group/ungroup, change
layout), designing new visualizations and connecting to the
database containing the evolutionary data. The part anno-
tated as “B” displays information about the entity under
the pointer: The type, the name, the metrics mapping (e.g.,
number of bugs mapped on the width) and the metrics value.
The main surface contains the visualization and allows the
user to interact with it by means on contextual menus.

In the figure we see BugCrawler at work: Window 1
shows author information for a directory hierarchy of Gimp.
Each author is represented by a color, and the area of each
colored rectangle is proportional to the work done by the
corresponding author. Window 2 shows the contents, in
terms of files, of the selected directory (annotated with an
arrow). For further details on the views see [1, 3, 4].

1



Figure 1. BugCrawler visualizing author information on a directory hierarchy of Gimp (window 1).
Each directory is represented as a Fractal Figure [4]. Window 2 shows the contents (in terms of files)
of the selected directory (annotated with an arrow).

The tool is interactive: It is possible to navigate between
the views and to inspect every entity. When these entities
are files the source code can be read on-the-fly. The tool al-
lows the user to select a group of entities and to change their
visual representation, i.e., change the figures representing
them. To decrease the level of granularity, new views can
be applied on the contents of a visualized entity.

Since every software system has its own characteristics,
a predefined set of views could not be the best solution for
the analysis of all the systems. In BugCrawler we address
this problem by adding to the predefined views the possi-
bility to create user-defined visualizations. The user can (i)
choose which entities visualize, (ii) which figures and lay-
outs use and (iii) define the metric mappings.

We have evaluated the effectiveness of BugCrawler to
support the understanding of software evolution by apply-
ing it on several large software systems, such as Mozilla
[1–4], Gimp [3], Apache [2], Gcc [2].

References

[1] M. D’Ambros. Software archaeology - reconstructing the
evolution of software systems. Master thesis, Politecnico di
Milano, Apr. 2005.

[2] M. D’Ambros and M. Lanza. Software bugs and evolution: A
visual approach to uncover their relationship. In Proceedings
of CSMR 2006 (10th IEEE European Conference on Software
Maintenance and Reengineering), pages 227 – 236. IEEE
Computer Society Press, 2006.

[3] M. D’Ambros and M. Lanza. Reconstructing the evolution
of software systems. In Submitted to CSMR 2007 (11th IEEE
European Conference on Software Maintenance and Reengi-
neering), 2007.

[4] M. D’Ambros, M. Lanza, and H. Gall. Fractal figures: Visu-
alizing development effort for cvs entities. In Proceedings of
Vissoft 2005 (3rd IEEE International Workshop on Visualiz-
ing Software for Understanding), pages 46–51, 2005.

[5] M. Lanza. Codecrawler — lessons learned in building a
software visualization tool. In Proceedings of CSMR 2003
(7th IEEE European Conference on Software Maintenance
and Reengineering), pages 409–418. IEEE Computer Society
Press, 2003.

2


