
Università
della 
Svizzera
italiana

USI Technical Report Series in Informatics

A qualitative analysis of preemptive conflict detection
Lile Hattori1, Michele Lanza1, Marco D’Ambros1

1 REVEAL @ Faculty of Informatics, Università della Svizzera italiana, Switzerland

Abstract

Preemptive conflict detection is the act of detecting a potential merge conflict at an
earlier stage than at check in time, and informing the involved developers about it. Re-
searchers have proposed a number of tools and techniques to detect potential merge
conflicts. However, a limited number of studies have been conducted so far to investig-
ate whether the adoption of such tools and techniques brings benefits to developers.
We have conducted a qualitative user study to understand how developers behave
when dealing with merging and how this behavior changes when they are exposed to
preemptive conflict detection. We report on the analysis of the data collected in the
user study, as well as the discussion on the findings derived from the analysis.

Report Info

Published

Number
USI-INF-TR-2011/05

Institution
Faculty of Informatics
Università della Svizzera italiana
Lugano, Switzerland

Online Access
www.inf.usi.ch/techreports

1 Introduction

Teamwork plays an important role for a successful delivery of a software system [9]. A team of developers
must deal with parallel development and manage the dependencies between their activities. This involves
not only the adoption of development processes, norms, methodologies, and tools [4], but also human com-
munication, coordination, and collaboration.

An important aspect of team collaboration is awareness, defined as an understanding of the activity of
others that provides a context for one’s activity [11]. In the context of software development, awareness is
seen as a means by which team members can become aware of the work of others that interdepends with
their own [8]. As a concrete example, suppose a developer is implementing a function that is dependent
on another one, which is in turn undergoing a semantic change. This developer should be aware that the
function his code is calling is under change, because this can impact the behavior of his function.

In a collocated team, awareness is mainly obtained through human interactions, such as meetings, in-
formal conversations, overhearing conversations [12], and helping colleagues. In a distributed team, how-
ever, the distance among developers or teams constitutes a barrier for informal interactions, and the aware-
ness of the activity of the team is consequently lower than in collocated teams. Some of the problems that
arise with a low awareness level are communication breakdowns [8], lack of willingness to help others, and
delays on deliveries [19].

Recently, there has been a significant effort from the software configuration management (SCM) com-
munity to increase awareness of distributed teams by supporting coordination across multiple developers
working in parallel in the same code base [2, 14, 18, 25]. These approaches to promote workspace aware-
ness preempt SCM systems, by detecting in real time concurrent modification to software artifacts, especially
those that are potentially conflicting: concurrent changes that are likely to cause merge conflicts at check in
time.

A limited number of studies [2, 10, 25] have been conducted to evaluate whether the adoption of tools to
promote workspace awareness are beneficial to developers. Their initial findings suggest that, when pree-
mptive conflict detection is introduced, the frequency of communication increases, there is a reduction in

1

http://www.inf.usi.ch/techreports/


overlapping work, and an increase in the detection and resolution of conflicts. However, some fundamental
questions concerning these approaches remain open: Were the changes observed in these studies beneficial
to developers? Did the developers’ strategies to deal with merging change? Is the information being delivered
disrupting? Would they prefer to get them in a different way?

We have conducted a qualitative user study to understand how developers behave when dealing with
merge, how this behavior changes when they are exposed to preemptive conflict detection, and whether this
change is beneficial to them. We also investigated how developers prefer this information to be delivered,
by exposing them to two different ways of visualizing emerging conflict and collecting their opinion. The
research questions we investigate in this study are:

RQ1 How do developers behave when they have to merge code and resolve conflicts?

RQ2 How does this behavior change when information of emerging conflicts is present?

RQ3 How do developers perceive different approaches to deliver information on emerging conflicts?

We have collected data from observations, interviews, and questionnaires, and analyzed it iteratively by
abstracting the findings to obtain a summary of the most important ones. As a highlight of our findings, we
have observed a change on the frequency and depth of communication, as well as a change on the strategies
to merge code when developers are exposed to preemptive conflict detection. These changes were beneficial
to developers, since they successfully dealt with merging, in contrast with the struggle to merge code without
the information on emerging conflicts.

Structure of the document. In Section 2 we review the related work on tools and mechanisms to detect
conflicts, to then discuss the evaluation performed so far. In Section 3 we present our technique to detect
emerging conflicts, and the different ways it can be visualized on the IDE. In Section 4 we describe the design
of the qualitative user study we conducted. In Section 5 we present the analysis of the data collected, to
discuss our findings in Section 6. We finally summarize our findings and discuss the lessons learned in this
study in Section 7.

2 Related Work

Although there have been efforts to help developers to detect and preempt merge conflicts earlier than at
check in time, only few of them evaluate their strategies and the developers’ behavior when merging and
using preemptive conflict tools. We first present the related work on tools and mechanisms to detect conflicts,
to then discuss the evaluation performed so far.

2.1 Conflict Detection Tools

To develop software in parallel and coordinate themselves, software developers use coordination tools, such
as SCM systems and bug tracking systems, as well as communication tools, such as emails and IRC chan-
nels. SCM systems let developers code in parallel by allowing them to check out the project to their private
workspace, perform changes, and check them into the repository. The coordination model provided by SCM
systems is a tradeoff between working in isolation and being aware of the team activity.

Conflict detection tools aim at complementing SCM systems by increasing the awareness of the activity
of the team, yet maintaining the workspace isolation – other developers will only have access to a developer’s
new code when he checks it in. These tools can be classified into two categories: after check in and before
check in.

2.1.1 Conflict Detection After Check in

Tools belonging to this category aim at detecting conflicts after one has checked in new code to the repository.
They have the advantage of reducing the number of false positives (conflicts that are detected but do not exist
at check in time) with the price of detecting them at a later stage.

The seminal work of O’Reilly et al. [21] improves conflict detection in Concurrent Versioning System
(CVS) by extending the watches – a mechanism that permits users to request notification of edit, un-edit and
commit actions on files managed by CVS that originates from other users. Their tool, Night Watch, collects

2



the notification of a total of 12 events (including the 3 native ones) and checks for possible conflicts across
workspaces.

Brun et al. [3] propose a similar solution with a stand-alone tool, called Crystal, which detects conflicts
from Mercurial. Crystal detects seven distinct states a repository can be in: same, ahead, behind, merge, tex-
tualX, buildX, and testX. The latter three happen when distinct change sets cannot be automatically merged,
when a build fails after a merge, and when tests break after a merge, respectively.

2.1.2 Conflict Detection Before Check in

These tools aim at detecting conflicts as early as possible, before new changes are checked in the repository.
They have the advantage of warning developers as soon as conflict arise, allowing them to take preventive
actions to avoid dealing with resolving conflicts at check in time. However, they can produce false positives,
or short-lived conflicts that might disappear before the check in.

Palantìr [24, 25] is an Eclipse plug-in that listens to source code changes at a developer’s workspace, and
checks for emerging conflicts. Palantìr is able to detect direct conflicts – concurrent changes to a single file
– as well as indirect ones – changes to a file that might affect another one that depends on it. It enriches
Eclipse’s workspace by adding visual cues on the package explorer to show which files might be conflicting,
and providing a view with the detail of each potential conflict, such as authors involved, location, and severity
of the conflict. The difference between Palatìr and Night Watch is that the first can preempt conflicts before
changes are checked in, while the latter only detects them afterwards.

FASTDash [2] and CollabVS [18] offer different types of awareness information, from which one of them is
conflict detection. FASTDash shows who has source files checked out, which files are being viewed, and what
methods and classes are currently being changed. When two programmers are editing the same source file, it
immediately notifies them of a potential conflicting situation. CollabVS’s stronger contribution is to provide
different communication channels, such as instant messaging, collaborative code editing, and audio/video
sharing. It notifies developers of concurrent dependent changes, which can be used by them to prevent
conflicts. The main difference between these two tools is that FASTDash is a stand alone application, which
brings the overhead of switching between applications to be aware of what is happening, while CollabVS is
an extension for VisualStudio, thus working within the IDE.

Guimarães and Rito-Silva [14]propose a solution that goes beyond awareness of potential conflicts. When
the project is checked out, the real-time integration creates a merge workspace, which is shared among de-
velopers and continuously integrate the changes made by them in their private workspaces. As conflicts
emerge, the merge workspace reports them to the affected developers. Conflicts are found in two different
ways: direct conflicts are detected when parallel revisions of the same element cannot be merged; and other
conflicts are detected every time the merged system is rebuilt (recompiled and retested).

Lighthouse [7, 23] and its extension, CASI [26], are two loosely related work. Their philosophy towards
merge conflicts is to prevent them from happening by showing in an emerging design who is changing which
parts of the system down to method level. With this information, developers can proactively avoid concurrent
modification of the same source code entities. Thus, these tools do not explicitly detects emerging conflicts.

2.2 Evaluation of Coordination Strategies when Merging

Though there has been a significant effort to proactively detect conflicts and notify developers, little work has
been done towards understanding how developers behave when facing merge and conflict resolution. What
are developers’ needs in these situations? Few field studies [13, 9] observed this phenomenon and report
on it at a general level. Furthermore, does developers’ behavior change when information about emerging
conflicts is available? How does the behavior change? Little is known on whether the extra information is
beneficial to developers, given the lack of evaluation of the solutions proposed.

Grinter conducted the first field study that investigated developers’ coordination strategy [13]. The study
is composed of field observations and semi-structured interviews conducted on two development teams of
distinct software companies. The aim of the study was specifically to understand how developers use SCM
tools to coordinate their work. Grinter observed that sometimes it becomes difficult for a developer to merge
without communicating with the other person who worked on a module. When this happens, developers
tend to discuss what they did, and work together to solve the conflicts and successfully merge the code.
Another behavior observed is that developers are constantly faced with a dilemma: on the one hand they
want to rush and finish their work first to avoid merging; on the other hand, they want to produce quality

3



code. One might think that experienced developers have no problems handling merge. However, Grinter
observed that even experienced developers face problems merging code.

The second study was conducted through an eight weeks observation and note taking of the coordination
practices of a software team at NASA [9]. The team followed a formal software development process that in-
cluded, among others, communication through emails after files are checked in and code reviews. Similar to
the finding of Grinter, de Souza observed that developers tend to speed up to finish their activities earlier to
avoid merging. Another behavior observed is related to files that are frequently changed by many developers.
They tend to perform partial check ins, which consist of checking in some of the files even when the de-
velopers have not finished all their changes. Since it takes long to compile the system under development, it
was observed that some developers tend to hold their check ins until the end of a work day. It is also common
practice to send an email (containing a brief description of the impact of their changes on other’s work) to
the team before performing the check in. Thus, in some cases developers tend to think individually trying
to avoid merging, while in other instances they think collectively by holding check ins and explaining their
changes to the other team members.

The work of Sarma et al. [25] focuses on preemptive conflict detection and the variation of developers’
ability to detect and resolve conflicts. They conducted a 90-minutes laboratory study with 40 participants to
investigate: (i) whether workspace awareness helps users in their ability to identify a larger number of con-
flicts; (ii) whether workspace awareness affects the completion time for tasks with conflicts; and (iii) whether
workspace awareness promotes coordination. Their results show that participants who used Palantìr de-
tected and resolved a larger number of conflicts than those with no conflict detection tool. When it comes
to completion time, the participants using Planatìr took less time to resolve direct conflicts, but more time
resolving indirect conflicts. In general, participants using Palantìr coordinated more than those not using it,
the main coordination actions being SCM operations and chat. This initial evaluation shows promising res-
ults, however we believe that it is important to investigate whether these improvements bring fundamental
changes in developers’ behavior, and whether the trade-off between the benefits and the cost in added co-
ordination pays off.

Another related study is the one conducted by Biehl et al. [2] that evaluates the impact of change aware-
ness and conflict detection. The tool under evaluation, FASTDash, not only informs of potential conflicting
situations, but also which files are being viewed, and what methods and classes are being changed. They
conducted an observational study of a development team before and after the introduction of the tool. There
were 6 participants involved, who were observed for four afternoons. The most important results of this study
were the increase in communication, which the authors attribute to the raise of awareness, and the reduction
in overlapping work.

The last related study was conducted by Dewan and Hedge [10] to evaluate the usefulness of CollabVS’s
mechanism to detect and fix conflicts at editing time. The tool showed to be useful to increase the developer’s
ability to detect and resolve conflicts with an increase in communication for resolving indirect conflicts.

Our user study reported in this document complements the empirical studies performed so far in several
aspects. First, it studies the behavior of developers when performing SCM operations (e.g., check in, check
out, merge) in detail, analyzing the different strategies and relating them with the developers’ experience.
Second, it investigates how developers change their behavior when exposed to preemptive conflict detec-
tion, and whether this change is beneficial for them or not. Lastly, it collected developers’ opinion of how to
present the information of emerging conflicts without disturbing their main focus: to produce quality code.

3 Preemptive Conflict Detection

To study the impact of preemptive conflict detection on developers’ behavior when merging code, we have
implemented an application to detect conflicts in real time and to notify developers about them. The goal
of this application is to support developers to detect emerging conflicts at earlier stage than during check-in,
and consequently, coordinate their activities to avoid complex merging.

We present the conflict detection algorithm we devised and Conflicts, the plug-in that enriches the Eclipse
IDE to show information on emerging conflicts.

3.1 Conflict Detection Algorithm

Our conflict detection algorithm resides on the server of Syde [17], our tool to help developers to collab-
orate. Syde is a client-server application that tracks the fine-grained changes that developers perform to a

4



shared software project in the Eclipse IDE and records them on the server for multiple purposes: raising the
awareness of the team activity, detecting conflicts, and building recommendation systems that use the recor-
ded data. To do so, a system to be tracked is modeled as an abstract syntax tree (AST), and the changes are
modeled as insert, delete and change operations to the AST. On the server, Syde keeps the AST representation
of the state of the system in each developer’s workspace.

Our algorithm detects structural conflicts [20] related to the change operations Syde tracks. It can detect
both direct [22, 24] and indirect conflicts [24, 26]. Direct conflicts refer to changes concurrently made to
the same program artifacts, while indirect conflicts refer to changes made on an artifact that can impact an
interdependent artifact. Indirect conflicts can be further classified into syntactic or semantic. An example of
a syntactic conflict is the change of a method’s signature that another method calls, causing a compilation
error. A semantic conflict involves changing the behavior of a method, potentially introducing runtime errors
or unexpected behaviors on its callers. So far, we have addressed direct and indirect conflicts due to syntactic
changes.

The conflict detector is triggered every time a new change operation arrives at the server. It receives as
input the operation, the AST of the author of this operation, and it compares them against the ASTs of the
other developers currently working on the project; one at a time. If there is a potential conflict, it always
refers to two developers and their conflicting entities. In our model, a conflict never involves more than two
developers. Although we could have modeled it for multiple developers, we decided to keep it simple to
avoid the overhead in complexity of the algorithm, and in potential coordination of developers. Our conflict
detection algorithm uses, apart from the change and the AST models, the following information tracked on
the Eclipse IDE: the current SCM revision of the file where the entity resides, and whether the entity was
modified or not since the last check-in. This extra information helps the algorithm to order the change events.

The created conflicts are classified into two categories: yellow – when there is a structural conflict between
two entities, but none was checked in the SCM system; red – when there are structural differences between
two entities, and one of them has been checked in the SCM system. Once created, a conflict follows a work-
flow (See Figure 1) until its resolution. There are three states a direct conflict can be, and two states an indirect
conflict can be. Each state is described below. In summary, a conflict can change to another state, stay in the
same state or be resolved.

State 1 State 2

State 3Resolved

(a) Direct conflicts

State 3

State 5

Resolved

State 4

(b) Indirect conflicts

State 1 Conflicting changes on two versions of same entity, both are up-to-date with SCM.
State 2 Conflicting changes on two versions of same entity, one is outdated with SCM.
State 3 Conflicting changes on two versions of same entity, both are outdated with SCM.
State 4 A developer changed/deleted a method’s signature, another developer is changing its caller.
State 5 A developer changed/deleted and committed a method’s signature, another developer is changing its caller.

Figure 1: Conflicts workflow

3.2 Conflicts Plug-in

Once potential merge conflicts are detected by the algorithm on the server, this information needs to be
shown to the involved developers in their IDE. We have implemented in the Conflicts Plug-in three different
ways to show emerge conflicts:

• List View shows all potential conflicts as a list.

• Graph View shows the classes in a graph and potential conflicts as a color layer on top of each node.

5



• Annotations on the Java Editor show potential conflicts as a marker on the left ruler on the Java editor.

Although in this study we evaluate only the views, in the following, for completeness, we present and
explain the three of them.

3.2.1 List View

It shows all the potential conflicts that a developer might be involved in (See Figure 2). It shows in which
method or class the conflict is, who the other developer involved is, a description of the conflict, and its status
(yellow/red). If a developer clicks on one of the conflicts in the list, the file in which the conflict is located
opens with the involved class or method in focus. This view is similar to the ones presented in previous tools
[18, 25], and thus can be considered an adaptation of them.

Figure 2: The Conflicts List View showing three potential conflicts: two red, and one yellow

3.2.2 Graph View

It shows a graph representation of the system, with the packages and classes as nodes and containment or
call dependency as edges (See Figure 3). This view notifies developers about emerging conflicts by adding a
color layer on the class node. If a developers wants to get more information on the conflict, he can hover over
the node to see in which method the conflict is located, who the other involved developer is, and read the
description of the conflict.

1 2 3 4

Figure 3: The Conflicts Graph View showing potential conflicts in classes Stack and StringManipulator

The Graph view provides several graph customization options that can be accessed through the controls
on the toolbar or by right-clicking on a node. The options found with right-clicking on a node are to col-
lapse/expand it –in case the node is a package– and to hide it. The controls allow developers to:

1. change the relationship shown by the edges from containment to call dependency;

2. change the graph layout to one of: horizontal or vertical tree, grid or radial;

3. start/stop updating the graph according to the changes being done (e.g., if a class is added, a node
representing it will also be added if this option is selected);

6



4. enable/disable emerging design, which means the graph only shows the classes that a developer opens
while he is working.

The concept of emerging design was inspired by previous tools [7, 23, 26] that are specialized in showing
to developers the emerging design.

3.2.3 Annotation on the Java Editor

If a developer does not want to keep the views open, he can still get hints of potential conflicts, but only on
the file that he is currently working on (See Figure 4).

Figure 4: The Annotation on the Java Editor showing a potential conflict on the method reverseWord of class StringMa-
nipulator

The left ruler of the Java editor showing the conflicting entity receives a yellow or red color and the de-
veloper can hover over the annotation to read the conflict’s description and the name of the other developer
involved.

4 User Study Design

We want to qualitatively investigate how developers behave when dealing with merging code, and how their
behavior changes when they are exposed to preemptive conflict detection. As a secondary goal, we want to
investigate how developers prefer the information on emerging conflicts to be delivered to them.

We formulate the following research questions:

RQ1 How do developers behave when they have to merge code and resolve conflicts?

RQ2 How does this behavior change when information of emerging conflicts is present?

RQ3 How do developers perceive different approaches to deliver information on emerging conflicts?

To observe developers’ behavior, ideally we would conduct a field study with a team of developers that
adopt the preemptive conflict detection tool to observe how their behavior change while they develop soft-
ware in practice. However, it is difficult to convince practitioners to change their programming environment
without having previous evidence of the usefulness of the tool that is being presented to them.

Therefore, we have designed a user study in a laboratory setting to simulate developers working in parallel
to closely observe their behavior. The study is composed of a programming assignment with three tasks that

7



are performed by a pair of developers simulating a situation of parallel development. Each assignment is
designed to cause a merge conflict. To simulate a distributed environment, developers are not allowed to talk
nor to see the screen of each other. All the communication has to be done over instant messaging (IM). In
addition, developers are given the Eclipse IDE preconfigured with the necessary tools (Subversive, connectors
to SVN, and Syde’s plug-ins) to perform the assignment, and an IM client for communication.

4.1 Data Collection

We follow the guidelines of Creswell [6] and Barbour [1] to use mixed methods of data collection for a better
interpretation of our findings. The data sources we have collected are:

• questionnaires regarding the participants’ experience level, and regarding the assignment;

• observation through video recording;

• interviews to gather participants’ feedback on their experience with using preemptive conflict detec-
tion;

• documentation in the form of the IM logs, and the list of changes and conflicts generated during the
implementation assignment.

In the following we explain how each data was collected and what procedure we used to analyze it.

4.1.1 Questionnaires

Participants were asked to answer two questionnaires for different purposes:

1. Screening questionnaire. Before the assignment session, participants were asked to answer a screen-
ing questionnaire (See Appendix A) that collected personal (name, email address) and technical exper-
ience (level and number of years of experience with the tools and concepts used in the assignment)
information. Personal information was used for contact purposes, while the information on the parti-
cipants’ experience level was used to characterize the participants and take their knowledge into con-
sideration on the data analysis.

2. Debriefing questionnaire. After the assignment, participants were asked to answer a short question-
naire (See Appendix B) to give immediate feedback about the assignment. First, they were asked about
their experience in performing the experiment, then they rated some statements related to the usability
of the views that showed emerging conflicts. In the second half of the questionnaire, participants were
given a few statements regarding each task to be rated according to their opinions.

4.1.2 Observation

The observation was not performed directly during the assignment, but we recorded each participant’s in-
teraction with the tool and analyzed the screencast (a digital recording of computer screen output) at a later
moment. To properly analyze the screencast, we developed a codebook that we used to annotate the videos.
The codes created (see Table 1) can be classified into three categories: communication, interaction with the
SCM system, and interaction with the Syde’s views of preemptive conflict detection.

To code the screencasts, we used the tool called VCode [16], which provides a timeline, two different types
of annotations (range and mark), and keyboard shortcuts for placing the annotations, playing and pausing
the video, and adding descriptions to the annotations. After the screencast is annotated, VCode exports all
the annotations to a .csv file, which we used for qualitative and quantitative analyses of the generated data.

4.1.3 Interview

At the end of each session, we conducted a semi-structured interview with the two participants at the same
time to collect more feedback from them. Table 2 shows the questions that served as a guide to the interviews.

However, since the goal of the interview was to collect the participants’ opinion regarding preemptive
conflict detection, the different ways to visualize this information, and the user study itself, each interview

8



Table 1: Codebook used to annotate the screencasts of the participants’ coding sessions

Category Code Description Type
Communication Communicating When the chat window is in focus range

Message notification When notification of a chat message appears, but the
chat window is not in focus

mark

Interaction with SCM
system through the
IDE

Synchronizing Synchronizing the project or a part of it with the code-
base in the repository

range

Updating Updating the project or a part of it with the latest ver-
sion from SVN

range

Checking in Checkin in the changes made to the project range
Merging Merging the code with the latest version from SVN range
Resolving conflict Resolving conflict during merging range
Viewing changes Viewing changes in the Compare editor range

Interaction with Syde Conflict graph When the conflict graph is visible range
Conflict list When the conflict list is visible range
Interaction with graph When the user interacts with the Conflict graph mark
Interaction with list When the user interacts with the list mark
Yellow conflict When a yellow conflict regarding the task appears mark
Red conflict When a red conflict regarding the task appears mark

Task delimiter Task starts User starts a task mark
Task ends User finishes a task mark

Table 2: The list of questions that guided the semi-structured interview at the end of each session

Questions
1 Did you have to resolve conflicts during the experiment? In which situations?
2 Do you think being aware of emerging conflicts at implementation time helped you to prevent conflicts or to

reduce their complexity at check in?
3 Did the information about emerging conflicts help you to be aware of what your colleague was doing?
4 Were emerging conflicts and incentive for you to talk with your colleague and to coordinate your tasks?
5 Did you get to know what were the tasks of the other participant?
6 Was the Conflict list useful? Was it intuitive? What are the advantages and disadvantages of this view?
7 Was the Conflict graph useful? Was it intuitive? What are the advantages and disadvantages of this view?
8 Which one of the two visualizations do you prefer? Why?
9 Can you think about other ways that this information could be visualized?
10 Can you think about situations in your everyday coding in which these visualizations could be helpful?
11 Do you have any other suggestions or comments about the tool?
12 Do you have comments or suggestions about the experiment?

had different set of questions that were asked according to the answers participants gave to questions previ-
ously asked.

In most cases, there was a short break between the assignments and the interviews. Hence, the parti-
cipants had some time to think about their experience with the tool, what the advantages and disadvant-
ages of having information in preemptive conflict detection were, and how this information could be better
presented. In a few occasions, when participants could not meet with the experimenter at a later time, the
interview was conducted right after the end of the assignment.

The interviews were recorded and later on transcribed to be used on the data analysis. We decided to
not develop a codebook for the interviews, because they were usually short (around 10 minutes). Hence,
we mainly used statements of the participants to illustrate their opinion, and support the findings that were
emerging from the data analysis.

9



4.1.4 Documents

A few documents were also collected at each session, however they were only used in the data analysis when
some of the other data collected was missing. We collected: the chat logs of each participants, and the list of
changes performed by them (collected through Syde). The list of changes indicates who changed where in
the system and in which order (See Figure 5).

Figure 5: Example of a list of changes

It was more frequently used by the experimenter to monitor the assignment and take action whenever
unexpected problems happened. The chat logs were only used during the data analysis whenever there was
a problem with the screencast of a participant, which happened three times, or the chat window was located
outside the recorded area, which happened once.

4.2 Object System

The system we chose as object of our experiment is Checkstyle.1 We used version 5.3, which consists of 341
classes distributed across 22 packages, for a total of 46 KLOCs.2 Our choice was motivated by the following
factors: Checkstyle’s size allows for performing a user study session, yet being representative of real life pro-
grams. It is written in Java, with which many potential participants are sufficiently familiar. It has been used
in previous experiments [5, 15, 27, 28], from which one was conducted by the authors of this work.

4.3 Tasks

The assignment was composed of three coding tasks that had to be done by two participants collaborating
with each other. Each participant had a different set of tasks, but they were complementary. For a task to be
considered finished, each participant had to implement what his task was asking him to do, coordinate with
his pair, check in his changes, update the code with the changes done by his pair, and make sure all the tests
related to the task pass.

In the following we describe each task, showing what each participant had to code (refer to Appendix B to
see the complete instructions for the set of tasks of one participant).

Task 1 – Improve class MethodCountCheck. In this task, participants are asked to make different modifica-
tions in method checkCounters, which basically counts the number of (private, public, package, and
default) methods in a class. One of the participants is asked to refactor the method checkCounters by
creating a utility method in order to remove the repetition on the code of checkCounters. The other
participant is asked to implement a few checks that are missing in checkCounters.

Task 2 – Finishing class PlainTextLogger. In this task, participants were asked to finish the implement-
ation of class PlainTextLogger. For one participant, it meant complementing the implementa-
tion of method addError, and implementing method fileStarted. For the second participant, it
meant complementing the implementation of method addError with different functionality, and im-
plementing method fileFinished.

1See http://checkstyle.sourceforge.net/
2Measured using http://eclipse-metrics.sourceforge.net/

10

http://checkstyle.sourceforge.net/
http://eclipse-metrics.sourceforge.net/


Task 3 – Finishing class JsonLogger. In this task, participants were asked to finish the implementation
of class JsonLogger. For one participant, it meant complementing the implementation of method
addError, and implementing method fileFinished. For the second participant, it meant com-
plementing the implementation of method addError with different functionality, and implementing
method fileStarted. Though the description is similar to the one of Task 2, what was asked them to
change in method addError was different in all four cases.

Each task was accompanied by instructions to prepare for it, which contained the tools and views that
participants were or were not allowed to use in each task (See Appendix B).

4.4 Pilot Studies

To plan a user study in a laboratory setting in which two participants have to collaborate through IM and
merge conflicts have to appear is a complex task. Thus, in our first pilot study, we initially tried to simulate
the second person of a pair of participants. This showed to be unfeasible, because there were several limita-
tions with the simulation of the second participant. For instance, it was difficult to simulate the decisions an
average developer would take, and to make sure the participant does not notice the second person is actually
a simulation.

We then, redesigned the assignment by creating a set of complementary tasks for two participants, and
ran a second pilot study. Though the complexity of the user study discouraged us to try it out at first, the
second pilot study showed that it was possible to run it. The merge conflicts appeared when we planned to,
and the participants, who in some cases were located in different continents, were able to communicate over
chat and to solve the tasks collaboratively.

4.5 Operation

The user study is composed of runs, where each run involves two participants changing the object system in
parallel to solve the tasks. The set of tasks each of the participants of a run receives is different but closely
related to each other.

Each run includes a training session of approximately 15 minutes and one experimental session. The
training session consists in a tutorial on the views, a hands-on session with a toy system, in which the par-
ticipants can intentionally cause conflicts and experiment with the views, and a warm-up task to allow the
participants to get used to the object system. The experimental session is composed of three programming
tasks with unlimited time to solve them. The first task is done without preemptive conflict detection, while
the second and third ones are done using either the list or the graph view.

There were 6 experimental runs, with slightly different settings among them.
In runs 1-3 and 6, the participants used laptops with 2 GB and 4 GB of RAM, running Mac OS X, with Ec-

lipse and Skype installed. In runs 4 and 5, the participants used their personal computers to run a VirtualBox
image with Ubuntu 10.04, and 1.5 GB of RAM, with Eclipse installed, and Gmail chat for communication. The
VirtualBox image might have constituted a disadvantage to the participants of runs 4 and 5, since it is slower
than the laptops running Mac OS X.

In runs 1-3, the participants had distinct set of tests to fix. However, we observed that this caused an
overhead in communication while they tried to understand they had different tasks and tests. For runs 4-6,
the two set of tests were put together, so a participant could see there were failures that the other participant
was responsible to fix, inferring immediately that they have different tasks.

In runs 1-3 the participants used the list view for Task 2 and the graph view for Task 3. In runs 4-6 the
participants used the graph view for Task 2 and the list view for Task 3. The swap of the views avoids serial
position effects.

Runs 1-3 and 6 took place in a reserved room at the University of Lugano, while runs 4 and 5 took place in
a laboratory (shared with other people) at the University of British Columbia.

5 Data Analysis

We analyze each run individually to, in Section 6, address the research questions. For each run (R), we first de-
scribe the participants’ background based on the screening questionnaire. Then, we describe the unexpected
events and problems that happened in the run. Then, we summarize the observations for each participant

11



(P) to, finally, correlate it to the data collected from the debriefing questionnaire and the interview. The com-
plete answers to the questionnaires can be found in Appendix C. For neutrality reasons, all participants will
be treated with the masculine pronoun, which does not imply that all participants are males.

5.1 Run 1

The participants (P1, P2) of this run are Master students in Computer Science with at least 6 years of experi-
ence in Java development and use of Eclipse, and consider themselves advanced users in the subject. P1 has
4 years of experience with SCM systems, and 3 years of experience working in teams, while P2 has 2 years of
experience with SCM, and considers himself knowledgeable in working with teams.

P1 indicated that he usually works in teams of 3-5 people, and uses Git and SVN. He checks in the code
more than once per day, but does not have to resolve conflicts frequently, because the team he works with
has different roles and tasks. P2 does not work in teams, and seldom uses systems SCM.

Problems. A couple of problems happened in R1 that directly influence the behavior of the participants
throughout the user study and their opinion about emerging conflict, and the study itself.

First, the participants did not follow the instructions given both by the experimenter and the handout
regarding the use of the views of emerging conflicts. Both participants used the list and the graph to visualize
emerging conflicts for Task 1, while P2 used the list for part of Task 3.

In addition, P1 did not understand how to use the graph, thus was unable to see anything with it. This
is evidence that the participants need more time to get comfortable with using the views, even though the
preparation instructions for Task 3 describe the steps to open and load the graph view.

5.1.1 Observations from Videos

Table 3 shows the frequencies and the descriptive statistics for the observations of participant P1, taken from
a 60-minutes screencast of P1’s computer. There is a total of 93 events, from which the majority are com-
munication events (22). The annotations of the events of P1’s programming session are incomplete for two
main reasons: (i) the video recording application crashed when P1 was at the end of Task 1, hence most of
the events for this task were lost; (ii) we restarted the video recording before the beginning of Task 2; (iii) to
avoid further crashes, we reduced the captured window and made it follow the cursor, which cut some of the
notifications (especially message notifications) that were located outside the window .

Table 3: Frequencies and descriptive statistics for observations of participant P1. The total duration of the events is given
in seconds. The descriptive statistics refer to the duration (in seconds) of the events that have a range

Events T1 Dur. T2 Dur. T3 Dur. Total Dur. Median Mean Stdev.
Communicating 1 19 14 285 7 278 22 582 16 26 35.6
Conflict graph 0 0 0 0 4 567 4 567 114 142 88.8
Conflict list 1 592 5 361 5 934 11 1887 49 172 247.9
Checking in 0 0 2 31 2 33 4 64 16 16 1.3
Merging 0 0 2 197 0 0 2 197 98 98 49.2
Resolving conflict 0 0 0 0 0 0 0 0 0 0 -
Synchronizing 0 0 6 25 3 14 9 39 4 4 1.8
Updating 0 0 3 13 0 0 3 13 4 4 1.3
Viewing changes 0 0 4 371 0 0 4 371 94 93 23.5
Running tests 0 0 6 152 3 78 9 230 22 26 7.7
Message notification 1 4 1 6
Interaction with graph 0 0 2 2
Interaction with list 0 4 3 7
Yellow conflict 0 1 0 1
Red conflict 0 2 0 2
Task starts 1 1 1 3
Task ends 1 1 1 3

Total 5 51 31 93

12



Table 4 shows the frequencies and the descriptive statistics for the observations of participant P2, taken
from a 140-minutes screencast of P2’s computer. The list of events is complete and covers the entire pro-
gramming session. There is a total of 178 events, from which the 4 most frequent ones are communication
(29), message notification (22), interaction with the list (22), and interaction with the graph (21).

Table 4: Frequencies and descriptive statistics for observations of participant P2. The total duration of the events is given
in seconds. The descriptive statistics refer to the duration (in seconds) of the events that have a range

Events T1 Dur. T2 Dur. T3 Dur. Total Dur. Median Mean Stdev.
Communicating 12 790 12 320 5 70 29 1180 15 41 70.8
Conflict graph 5 685 0 0 1 964 6 1649 156 275 367.6
Conflict list 6 699 9 1277 4 308 19 2284 41 120 140.5
Checking in 1 42 2 101 1 11 4 154 43 38 19.4
Merging 1 2 1 6 3 20 5 28 6 6 3.7
Resolving conflict 0 0 0 0 1 70 1 70 70 70 -
Synchronizing 4 30 9 30 4 12 17 72 3 4 3.5
Updating 1 2 1 2 1 1 3 5 2 2 0.5
Viewing changes 1 41 1 74 3 289 5 404 74 81 56.9
Running tests 2 41 8 149 3 62 13 252 20 19 4.4
Message notification 13 7 2 22
Interaction with graph 14 0 7 21
Interaction with list 18 4 0 22
Yellow conflict 1 1 0 2
Red conflict 0 3 0 3
Task starts 1 1 1 3
Task ends 1 1 1 3

Total 79 52 34 178

Task 1. Since the screencast of P1 for Task 1 was almost fully lost, the summarization of the events for this
task is mostly based on the events from P2. Even though the participants were not supposed to use the
emerging conflicts views, P2 keeps both views open, with the list in focus. At the beginning of the task, P1
tells P2 that he modified MethodCountCheck, and asks whether he has got any issues, to which P2 responds
negatively. After P2 also modifies MethodCountCheck, a yellow warning appears notifying that they are
both modifying method checkCounters. P1 asks P2 whether he sees the notification, to which he answers
positively, but the only communication that happens regarding this notification is P1 telling P2 that he is
“waiting for something to happen”.

P2 finishes his task and checks in the changes. When P1 tries to update the code, he gets conflicts and has
to resolve them. At this moment, they discuss and find out what their tasks are. After P1 merges, checks in
the code, and P2 updates it, the yellow warning disappears. P2 tells P1 everything is working, and they finish
Task 1.

An interesting observation is that P2 interacts quite a lot with the two views, and it becomes clear that he
is trying to get used to them while performing the programing assignment. This is evidence that they did not
spend enough time to feel comfortable with the views before starting the tasks. From the events of P1 (See
Table 3), it can be observed that he uses the list view while solving Task 1, which was not allowed.

Table 3 and Table 4 show that events related to the use of the conflict list appear in all three tasks for P1
and P2. This is further evidence that the participants did not follow the instructions related to the use of the
views for the tasks.

Task 2. In this task, both the participants start working on method addError of class PlainTextLogger.
When P2 is almost done, a yellow warning appears on the conflict list, to which P1 reacts by asking P2 whether
he was changing addError. P2 has already checked in his changes, and lets P1 know. P1 then merges the
changes from P2 and checks in his changes to addError. A red warning appears for method fileFinished,
which leads to a discussion of whether P1 is changing it or not. In the middle of the task, P1 and the experi-
menter realize he has the wrong set of tests, which causes some disruption. Another red warning appears for
method fileStarted, but for both red warnings there is no further need of merging at check in time.

13



Table 3 and Table 4 show that both participants interact a fair amount of time with the list view, commu-
nicating and viewing changes. The screencasts show that the information of emerging conflicts generate a
good amount of communication. However, the participants seldom try to understand what was the other’s
task and how their tasks relate. This type of communication is only triggered after a first round of check in
and check out.

Task 3. Unexpected events happened in this task that prevented an effective use of the graph view. First,
P2 did not understand how to load the graph, and did not ask for help. As consequence, the graph is empty
during the entire task. Second, from the middle of the task on, P1 switches to the list and uses that instead
of the graph. Because of these issues, P1 and P2 do not communicate in the first half of the task and do
duplicated work on method addError of class JsonLogger. When P2 has to merge the changes previously
checked in by P1, he struggles to resolve the conflicts and ends up by doing it manually on the Java editor.

The number of communication events in Task 3 is the lowest for the 3 tasks, ignoring the incomplete data
of Task 1 from P1. We attribute the lower communication to the absence of notification of emerging conflicts,
which prevents the participants from being aware that they are implementing the same method.

5.1.2 Discussion

The answers of participants P1 and P2 to the questionnaire indicate that P1 had to resolve conflicts for Task 1
and Task 2, while for Task 3 it was P2’s time to resolve conflicts. They indicate that communicating with
the other participant was somewhat helpful (agree/neither disagree nor agree); however different opinions
appear when it comes to the usefulness of knowing about emerging conflicts, ranging from disagree to agree.

On the interview, the participants commented that they were mostly communicating during check in
time:

“I think it was when we had to commit.” (P1)
“So mostly we were communicating if there was trouble in merging.” (P2)

In addition, P2 came into a conclusion that he was rushing to check in his changes to avoid dealing with
merging:

“... after the first commit I think that, for the first two tasks I was always focusing on committing first so I
don’t have to resolve conflicts. I reflected on it...” (P2)

Another issue that became evident during the interview is that the participants struggled to understand
the concept of emerging conflicts and were partially unable to benefit from it. They strongly believed they
misused the tool by not being collaborative enough:

“You know what? When I saw that he was editing I was like ’we’re gonna have problems’. So I think I just
completely misused the thing because after seeing that done in a collaborative way you’d say ’what are you
changing?’. Instead I was like ’we’re gonna have problems’.” (P1)

The participants mainly communicated when they had to merge code and resolve conflicts, even when
information of emerging conflicts was present to help them. While the extra information might have not
influenced the moment that they started talking, it seems to have influenced the amount of communication
that underwent between them.

Regarding the different views, P1 affirms that he prefers the graph view with the color metaphor to inform
about emerging conflicts, although he thinks there is a defect on the view that prevented him to see the
information at times. P2 did not have a chance to use the graph, and expressed that the list was useful to see
where in the code the other user was editing.

Finally, regarding other ways to visualize the emerging conflicts, P1 suggested to change the background
color of the Java editor, or add markers on its ruler. P2 thinks that it is beneficial to show the information on
the editor, because they do not need to keep a dedicated view open.

14



5.2 Run 2

The participants (P3, P4) of the run are PhD students in Computer Science, with 5 and 2 years of experience
with Java development. They have 1-2 years of experience in developing industrial size systems and team
development. P3 has 3 years of experience with using IDEs and SCM, and 2 years of experience with JUnit. P4
has 2 yeas of experience with using IDEs, and 1 year of experience with using SCM and JUnit. P3 is somewhat
familiar with Checkstyle, while P4 has no familiarity with it.

The participants usually do not work in teams, and currently use language-dependent SCM systems for
Smalltalk. They indicate that they check in code frequently (after new tests are created and run, and hourly),
but they rarely have to resolve conflicts because of the granularity of the SCM (method level).

Problems. A couple of problems happened on R2 that might have influenced the behavior of the parti-
cipants throughout the programming session, and their opinion about the emerging conflicts, and the study
itself. First, they had problems with incompatible tests, which provoked an extra loop of updating, running
the tests, and checking in the changes for Task 2. Then, for Task 3, they did not see conflicts in the graph,
because participant P4 kept the code with compilation errors for the entire duration of the task, which pre-
vented the tool to detect changes and, consequently, potential code conflicts.

5.2.1 Observations from Videos

Due to technical problems with the video recording application that were not detected during the experi-
ment, there is no screencast for P3’s session to be analyzed. Hence, the analysis of this run is based on the
events of P4 and on the communication log.

Table 5 shows the frequencies and the descriptive statistics for events observed from P4, taken from a 81-
minutes screencast of P4’s computer. There is a total of 205 events, from which message notification events
(42) and communication events (39) are the most frequent. The annotations of the events of Task 3 of P4 are
incomplete, because this task was interrupted as soon as P3 checked in his changes. The goal of Task 3 was
to provoke conflicts, so the participants would see them with the graph view. However, since this did not
happen, the experimenter decided to interrupt the task before P4 finished it.

Table 5: Frequencies and descriptive statistics for observations of participant P4. The total duration of the events is given
in seconds. The descriptive statistics refer to the duration (in seconds) of the events that have a range

Events T1 Dur. T2 Dur. T3 Dur. Total Dur. Median Mean Stdev.
Communicating 9 568 27 525 3 60 39 1153 17 30 38.4
Conflict graph 0 0 0 0 7 1106 7 1106 32 158 238.5
Conflict list 0 0 11 1342 1 1 12 1343 44 112 145.8
Checking in 1 8 3 61 0 0 4 69 8 17 20.9
Merging 0 0 0 0 0 0 0 0 0 0 -
Resolving conflict 0 0 0 0 0 0 0 0 0 0 -
Synchronizing 4 11 11 40 0 0 15 51 3 3 2.3
Updating 1 3 2 7 0 0 3 10 3 3 0.6
Viewing changes 2 466 5 234 0 0 7 700 13 100 164.8
Running tests 2 49 8 241 0 0 10 290 29 29 9.6
Message notification 4 28 10 42
Interaction with graph 0 0 33 33
Interaction with list 0 18 2 20
Yellow conflict 0 3 0 3
Red conflict 0 4 0 4
Task starts 1 1 1 3
Task ends 1 1 1 3

Total 25 122 58 205

Task 1. The participants start to implement what is asked in the handout, and P3 finishes and checks in his
code first. When P4 finishes and synchronizes his code, he notices that P4 did not add method checkMax,

15



and starts to communicate with him. After sharing code over chat, they realize that they had to make different
modifications, but think their modifications reflect the same code behavior. Thus, they discuss which one to
keep, and the chosen one is P4’s. P4, then, replaces the code from P3 with his, checks in the changes and tells
P3 to update. When P3 updates the code, his tests break, and he realizes the functionalities of the code they
implemented were different. They exchange messages to clarify that they have different tasks, P3 redoes the
modifications, checks-in the code and tells P4 to update them. P4 updates it and tells P3 that the code works
without rerunning the tests.

The communication between the participants is totally concentrated after the first check in of P3 and the
first attempt to checkin of P4. Although they communicate to try to understand what the other is doing before
P4 checks in, the fact that they do not realize their implementations had different functionalities provokes an
extra cycle of check out, modification and check in, which is performed by P3 after P4’s check in. Before the
assignments started, the experimenter informed the participants that they had related tasks, to which they
implied were the same. Spending the extra time understanding that the tasks are not the same is not the goal
of this study. Hence, the experimenter must be clear about this in the next runs.

An interesting behavior observed is that the participants shared code snippets with their modifications
over chat twice to coordinate between themselves.

Task 2. The participants start communicating at the beginning of the task, with P3 informing P4 he has to
fix 2 tests, to which P4 says he also has to fix 2 tests. However, they do not verify whether they have to fix
the same tests. They start implementing, until P3 says he sees some conflicts. P4 replies by saying he sees
P3 is also working on addError method. They continue the conversation by sharing the code snippets of
their modifications and realizing they are different. P3 asks P4 to check in first, so P3 can handle the merge.
When P3 updates and runs the tests, he realizes the changes introduced by P4 break his tests. P3, then fix
the code again and checks in the changes. When P4 updates the code, his tests break. At this moment, the
experimenter is called and realize the participants have incompatible tests, asking them to move to the next
task.

A couple of interesting behaviors are observed in this task. The first one being the attempt of the par-
ticipants to coordinate their activities before starting to implement, probably already expecting conflicts to
appear, but trying to avoid them. Second, as soon as they see a conflict emerging, they communicated and
the more experienced developer offers to handle the merge. Third, in the middle of the task, P4 inadvert-
ently overrides the changes introduced by P3 instead of merging them, consequently breaking a test that was
passing before.

Task 3. The first part of this task is to implement a rather long method. While working on it, P4 keeps the
code with compilation errors, which prevents Syde from capturing his changes and checking for conflicts. In
addition, P3 is familiar with what is asked in the task, and quickly finishes it. Thus, no emerging conflicts
were generated, preventing the participants from properly using the graph view.

5.2.2 Discussion

The answers of P3 and P4 to the questionnaire indicate that both had to merge code and resolve conflicts
in Task 1, while P3 had to merge and resolve conflicts in Task 2. They indicate the communicating with
the other participant was helpful (strongly agree) to perform the tasks, and on Task 2 as soon as they saw a
conflict, they communicated with one another (strongly agree/agree). When asked whether knowing about
emerging conflicts helped them to better coordinate, P3 was neutral (neither agree nor disagree), and P4 as
positive (strongly agree). The last one is due to the fact that the participants agreed for P4 to check in first,
and P3 be responsible for merging on Task 2.

When asked in the interviews whether emerging conflicts helped them to coordinate, they answered pos-
itively:

“... as soon as I noticed that P4 was changing something, then I asked him ‘man, what are you changing?’.”
(P3)

“ We coordinated before committing.” (P4)

16



When asked whether knowing of existing conflicts before checking in was helpful to reduce the complex-
ity of the merge, they were unsure:

“I’m not sure, because at the end... So probably the merge tool would also be helpful. So, it’s more like a
psychological thing. I would expect some conflicts to be there, so I will merge them. But I’m not sure it reduces
the complexity.” (P3)

“Maybe it reduces the overhead of the final merging, because you merge by kind of merging in place, right?
Via Skype or via the tool. Maybe that complexity, but regarding the code complexity I think that no.” (P4)

Indeed knowing about the conflict in advance on Task 3 made them deliver the changes into 2 smaller
check ins instead of a single one comprising the changes in 2 methods.

Participant P3 seemed to be convinced of the usefulness of the tool:

“While I think that the usefulness of this tool is that you are working on something you have to do and then
you see that someone else is also working on that. So in this case it was useful to coordinate maybe before doing
the commit, but the real strength of this tool is that maybe P4 is in another city, we are working, and then I see
P4 working in the same method, and then we can start interacting.” (P3)

In addition, when asked whether they could think about situations in their everyday coding in which
emerging conflicts would be useful, P3 expressed that he would feel more comfortable when working with
other people if he could know in which parts of the system they are working:

“Well, in my case for example, I can think about the work we’re doing with P4. I would have been more
relaxed to know that P4 wasn’t working on the same place I was working on. So, that would have been useful...
and in the case we were working on the same thing, we would have chatted. No, I think it’s useful.” (P3)

The results of this run show that emerging conflicts were useful for the participants to communicate,
exchange code, become familiar with one another’s tasks, and to coordinate code check ins and merging. In
addition, the participants (especially P3) felt that the information on emerging conflicts was helpful in the
assignment, and can be helpful in their development environment.

Regarding the different views, P3 affirms that he prefers the graph view, because he can use it instead of
Eclipse’s package explorer. However replacing the package explorer is not the goal of this view. P4, on the
other hand, expresses his aversion for graphs in general, and affirms that he prefers the list.

The suggestions on how improve the view of emerging conflicts were to add a quick view with the com-
parison of the conflicting code, or to have a shortcut from the conflict notification to a compare view of the
code differences.

5.3 Run 3

The participants (P5, P6) of this run are Master students in Computer Science, with 4 and 5 years of experience
with Java development. They have 4 years of experience with team development, but no experience with
developing industrial size systems. They have 3-4 years of experience with using SCM, IDEs, specifically
Eclipse for Java development, and JUnit, considering themselves advanced users. Both have indicated that
they have no experience with Checkstyle.

Both participants have indicated to work often in teams of 2-4 people. P5 uses SVN and Git, checks in the
code daily, and rarely has to resolve conflicts. P6 uses SVN, checks in the code once or twice per day, and has
to resolve conflicts 1-3 times per week.

Problems. A couple of problems happened on R3 that might have influenced the behavior of the parti-
cipants throughout the programming session, and their opinion about the emerging conflicts, and the study
itself. First, a defect on Syde prevented the participants from seeing the emerging conflicts at the beginning
of Task 2. When the problem was detected by the experimenter, the participants were towards the end of
Task 2. This might have influenced the fact that the participants only communicated right before checking
in the changes for this task. Second, P6 did not initialize the graph view correctly until the middle of Task 3,
when he started to see the emerging conflicts that were already happening before that moment.

17



5.3.1 Observations from Videos

Due to technical problems with the video recording application that were not detected during the experi-
ment, there is no screencast for P5’s session to be analyzed. Hence, the analysis of this run is based on the
events of P6 and on the communication log.

Table 6 shows the frequencies and descriptive statistics for events observed from P6, taken from a 104-
minutes screencast of P6’s computer. There is a total of 188 events, from which message notification events
(36) are the most frequent, followed by interaction with list (28), communication (26), and interaction with
graph (21). Distinct from the participants of the first 2 runs, communication events do not appear as the most
frequent. However, notification events are the first in the list, which means P5 was trying to communicate
with P6, who at many instances completely ignored the messages.

Table 6: Frequencies and descriptive statistics for observations of participant P6. The total duration of the events is given
in seconds. The descriptive statistics refer to the duration (in seconds) of the events that have a range

Events T1 Dur. T2 Dur. T3 Dur. Total Dur. Median Mean Stdev.
Communicating 20 1060 3 43 3 71 26 1174 17 58 9.4
Conflict graph 0 0 0 0 10 1283 10 1283 17 45 58.2
Conflict list 1 179 7 993 1 1 9 1173 104 130 154.3
Checking in 2 15 2 51 3 33 7 99 11 14 9.4
Merging 2 27 1 24 2 79 5 130 15 26 26.8
Resolving conflict 0 0 0 0 1 45 1 45 45 45 -
Synchronizing 2 7 0 0 3 6 5 13 2 3 0.8
Updating 4 25 1 2 1 5 6 32 3 5 5.6
Viewing changes 4 214 3 151 1 87 8 452 56 57 19.2
Running tests 3 46 4 58 6 121 13 225 17 17 3.5
Message notification 25 5 6 36
Interaction with graph 0 0 21 21
Interaction with list 0 28 0 28
Yellow conflict 0 3 2 5
Red conflict 0 0 2 2
Task starts 1 1 1 3
Task ends 1 1 1 3

Total 65 59 64 188

Task 1. Before the participants start the assignment, the experimenter explains that they would have three
related, but not identical implementation task. However, a few minutes before the participants start im-
plementing Task 1, P5 asks P6 a technical question related to his task in a manner that assumes P6 has the
same task. P6 simply ignores the question and replies saying he is writing Javadoc. Then, P6 asks P5 whether
method checkMax also has to log, to which P5 argues that there is no such method in his code, and that he
only needs to change method checkCounter. They have a long discussion about what the task is asking
them to do, until they realize they have different tasks. Meanwhile, P6 finished the task and checks in the
changes. When it is time for P5 to check in, he tells P6 he never did it through Eclipse. This is an unexpected
information for the experimenter, since in the screening questionnaire, P5 informed that he had 3-4 years of
experience with using SCM, IDEs, and specifically Eclipse for Java development.

What follows is that P5 tries merging the code, but ends up copying the code snippet he has implemented
into method checkMax that P6 introduced, which breaks the code. Ignoring this fact, P5 proceeds with the
check in. When P6 updates to the version P5 checked in and sees the errors, he simply reverts the code
to the previous version (the one P6 had checked in before), checks it in again, and informs P5 he did not
see any new checks, seemingly unaware that he just erased P5’s code snippet. P5 says he is going to add
it again and asks P6 whether he added new code, to which P6 answers “the resolution to the conflict you
introduced with the faulty class”. With this answer, it is clear that P6 thought he actually resolved the conflicts
correctly, which is not true. After re-implementing his changes, now fixing errors and making the tests pass,
P5 has difficulties checking in the changes into the repository, and asks the experimenter for help. After the
experimenter explains to him how to proceed, he checks in the code, P6 updates it, and successfully runs the
tests.

18



A careful observation of P6’s screencast points out a few difficulties he has when dealing with conflicting
versions in Task 1. He mistakenly erases the changes introduced by P5 without even trying to understand the
meaning of these changes. He clearly thought he had resolved the conflicts, unaware that he only erased the
changes introduced by P5. This behavior indicates that P6 is also fairly unexperienced with merging code,
although he also indicated having 3-4 years of experience with using SCM, IDEs, and specifically Eclipse for
Java development.

Task 2. Different from what happened in Task 1, in this task the participants do not communicate while
implementing the changes. Due to a defect on Syde, the list of emerging conflicts remains empty until the
participants finish implementing the changes related to this task and restart Eclipse. Meanwhile, P5 finishes
his implementation and says he is going to check in the changes. P6 sees there are three emerging conflicts
and waits for P5 to check in. While waiting for P5, P6 tries to investigate the emerging conflicts by clicking on
them (probably trying to see the code differences in each of the cases).

When P5 informs P6 he can update, P6 opens the Compare editor with the latest version from the reposit-
ory and copies the new code to his local copy, instead of using SVN’s synchronize and update options. When
he tries to commit the merged code, SVN complains that he does not have the newest version. After that, he
updates the code, verifies whether the tests are still passing, and checks in the changes.

In this task, the communication between the participants was restricted to coordinating at check in time,
different to what happened in the first task. They finished the task much faster, but still had trouble to merge
changes.

Task 3. At the beginning of this task P6 does not follow the instructions to initialize the graph view correctly.
He only realizes about his mistake after he finishes the implementation of the changes, when he starts to see
the emerging conflicts that were already happening before that moment. Right after, P5 asks whether P6 has
already checked in, to which P6 says he is waiting to be the one to resolve the conflicts.

After P5 checks in, P6 opens the Compare editor with the newest revision and copies the new code into
his local version. During the process of copying, he introduces a code redundancy that breaks two tests.
Meanwhile, P5 tells P6 to ask if he does not understand P5’s code, and continues explaining what he did.
After the explanation, P6 realizes what is the problem in the code that is breaking the tests, fixes them and
tries to check in. Because again he did not update, SVN complains he has an outdated version. When he
updates, SVN performs an automatic textual merge, which breaks the code. The fix is straight forward: Erase
the code copied from the newest version into his code (since he had already done it through the Compare
editor). Once more, P6 runs the tests and checks in the changes, finishing the assignment.

5.3.2 Discussion

The answers of P5 and P6 to the questionnaire indicate that P5 had to merge code and resolve conflicts in
Task 1, while P6 chose to merge and resolve conflicts in Task 2 and Task 3. Overall, they think that communic-
ation was helpful to coordinate themselves to perform the tasks (agree), except P6 for Task 3, who disagreed
it was helpful. When asked whether knowing about emerging conflicts was an incentive for them to commu-
nicate, they had slightly different opinion: P5 is neutral for Task 2, and agrees for Task 3; while P6 strongly
disagrees for Task 2, and disagrees for Task 3. Their answers are a reflection of the behavior observed from
the screencast: P5 was communicating much more and being more proactive than P6. When asked more
specifically whether knowing about emerging conflicts helped to avoid them at check in time, P5 was neutral,
while P6 agreed.

At the end of Task 1, when P5 had difficulties merging and checking in, P6 decided to wait on the following
tasks to be the one to merge the code. Although the decision was taken without a discussion involved, P5 was
happy to accept it in the following tasks. During the interview, the experimenter asked P6 whether he took
this decision to complete the tasks faster, to which he answers positively. Thus, already expecting that the
following tasks would involve resolving conflicts, the participants coordinated themselves to perform the
tasks faster. The positive side of this decision is that the most experienced participant showed willingness
to help the least experienced. The negative side is that having a preconceived notion that conflicts would
happen might have influenced their behavior during Task 2 and Task 3.

Indeed, the communication between the participants in Task 2 and Task 3 was concentrated at check in
time, which was mostly when they shared code snippets and discussed about their implementations. One in-

19



teresting statement given by P6 is that after seeing the emerging conflicts, he could deduce what P5 was doing:

“They were also small tasks, so you can deduce after seeing the conflicts what the other was doing.” (P6)

Since the experimenter noticed during the run that the participants had little experience with using SVN
through Eclipse, she asked them what they think about Eclipse’s support for resolving conflict, to which P6
answered it depends on the situation:

“Short answer is it depends. There are situations in which it’s straight forward ... there is an arrow that
copies from the version that he developed. In other kinds of situation it’s tricky because if we are really working
on the same piece of code and changing stuff, that is messy because you have to decide whether your version is
correct or the other one is correct.” (P6)

When asked which visual metaphors they preferred, both answered the list, explaining why:

“It was clear that, ok, it’s red, then you have some conflicts. You read, and it specifies where and what’s going
on. And the dots, the yellow, red, are really useful because you don’t spend time reading all of them, but you see,
ok the red ones are really the important ones. You go through them.” (P5)

When asked to comment about the disadvantages of the graph, P6 explanation evidences that he did not
understand how to initialize it:

“The disadvantage I found is that in the third task I missed the view because of the layout of Eclipse, be-
cause it was centered, but in the view I was seeing it was black. Then I had to realize that I have to scroll and
the center was there and the graph evolves on the right. And then I looked at it just at commit time, I think.” (P6)

Even though he thinks in the beginning the graph was not showing up because he had to scroll down to
see it, the fact is that he did not follow the steps given on the handout to create the graph when he initialized
the view. This could have influenced his preference for the list.

When asked how they would like to see the information about emerging conflicts, they expressed prefer-
ence for highlighting the code on the Java editor directly. They think the highlighting should be a layer that
can be disabled if it becomes disturbing for the developer.

5.4 Run 4

Participant P7 is a PhD student at the University of British Columbia, and participant P8 is a PhD student
at Federal University of Campina Grande and assistant professor at University of Feira de Santana. They are
experienced developers, with respectively 5 and 7 years of experience in Java development, 5 and 4 years
of experience in team development, and 2 and 3 years of experience in developing industrial size systems.
Furthermore, they have used IDEs for 5 and 7 years, Eclipse for 3 and 5 years, SCM for 4 and 3 years, and JUnit
testing for 2 and 4 years. None have previous experience with Checkstyle.

P7 currently uses SVN and works in a team of 2-3 people. He checks in weekly and deals with conflicts
once a month. P8 currently uses CVS, and sometimes works in teams of 3-4 people, but not at the moment.
He checks in daily, but rarely has to resolve conflicts in the current project.

Problems. A couple of problems happened on R4 that might have influenced the behavior of the parti-
cipants throughout the programming session, and their opinion about the emerging conflicts and the study
itself. First, there was a unplanned 30 minutes break between Task 1 and Task 2 because P7 had to meet a
student who was working on a project with him. Second, at the beginning of Task 2 the connection was lost
and the participants were working offline for some time until the experimenter detected the problem. As a
consequence, the participants did not see conflicts as they emerged, but only after reestablishing the con-
nection. Third, P7 ignored the instructions at the beginning of Task 3 and continued using the graph instead
of the list.

Another problem is that P8 updated the tests to the version in the repository at the beginning of Task 3,
which removed the test from the user’s workspace. After some time trying to locate the test class, P8 called
the experimenter, who had to copy it back to the workspace. This disturbed the start of P8’s implementation,

20



which gave P7 enough time to finish his implementation and check in the changes before P8 had effectively
started, eliminating the concurrent implementation. Lastly, P7 could not stay for the debriefing interview, so
it was conducted only with P8.

5.4.1 Observations from Videos

A couple of problems happened that influence the analysis of the data collected from the videos. First, the
screencasts have the video accelerated in comparison with the voice. Since we ignore the voice, and it was not
possible to compute the acceleration factor, the duration of events are skewed: the more towards the end an
event is, the more skewed to a lower value than it originally is. Second, P7 kept the chat window outside the
recording area, so communication events are missing for him. Checking the log, there are 40 communication
events with a couple of exchanged messages in each of them for the entire session.

Table 7 shows the frequencies and descriptive statistics for events observed from P7, taken from a 98-
minutes screencast of P7’s computer. There is a total of 137 events, from which the most frequent are inter-
action with graph (41), running the tests (24), use of the graph view (20), and synchronization (13) events.
Communication events were lost, because P7 kept the chat window outside the recording area. Moreover,
message notification events do not exist on Gmail chat, which limits the observations drawn from P7’s com-
munication strategies to the chat log.

Table 7: Frequencies and descriptive statistics for observations of participant P7. The total duration of the events is given
in seconds. The descriptive statistics refer to the duration (in seconds) of the events that have a range

Events T1 Dur. T2 Dur. T3 Dur. Total Dur. Median Mean Stdev.
Communicating 0 0 0 0 0 0 0 0 0 0 0
Conflict graph 0 0 13 1177 7 457 20 1634 26 82 110.9
Conflict list 0 0 4 24 0 0 4 24 6 6 1.9
Checking in 4 52 1 16 1 30 6 98 12 16 12.5
Merging 0 0 0 0 0 0 0 0 0 0 -
Resolving conflict 0 0 0 0 0 0 0 0 0 0 -
Synchronizing 4 22 2 20 7 61 13 103 11 8 8.3
Updating 2 20 2 7 3 14 7 41 4 6 5.1
Viewing changes 1 29 1 24 0 0 2 53 27 27 3.7
Running tests 7 81 11 108 6 19 24 208 4 9 8.3
Message notification 0 0 0 0
Interaction with graph 0 28 13 41
Interaction with list 0 9 0 9
Yellow conflict 0 1 2 3
Red conflict 0 0 2 2
Task starts 1 1 1 3
Task ends 1 1 1 3

Total 20 74 43 137

Table 8 shows the frequencies and descriptive statistics for events observed from P8, taken from a 92-
minutes screencast of P8’s computer. There is a total of 126 events, from which the most frequent are com-
munication (30), interaction with graph (16), and synchronization (16) events.

Task 1. The participants start to implement their tasks, until P7 finishes the implementation and tries to
communicate with P8, who does not respond. Given the situation, P7 proceeds with trying to check in his
code, but P8 has already checked in his changes. Meanwhile, P8 sees that P7 was trying to talk to him, and
answers to the chat saying he is going to update the code. What happens is that P7 does not manage to check
in because there is already a new version of MethodCountCheck in the repository. In the process of updating
to the newest version, P7 and P8 discuss about their tasks, P7 examines the differences between the versions
and decides to overwrite his local copy, which means he completely erases the changes he implemented. It
becomes clear that P7 did not realize the two implementations were semantically different, because after re-
running the tests and getting two failures (the same ones he had in the beginning of the task), he says that P8’s

21



Table 8: Frequencies and descriptive statistics for observations of participant P8. The total duration of the events is given
in seconds. The descriptive statistics refer to the duration (in seconds) of the events that have a range

Events T1 Dur. T2 Dur. T3 Dur. Total Dur. Median Mean Stdev.
Communicating 15 314 6 160 9 149 30 623 11 21 25.2
Conflict graph 0 0 11 658 1 1 12 659 16 55 81.5
Conflict list 0 0 3 8 7 780 10 788 8 79 152.8
Checking in 1 23 1 20 2 23 4 66 16 16 5.8
Merging 0 0 4 32 2 26 6 58 7 10 7.0
Resolving conflict 0 0 0 0 0 0 0 0 0 0 -
Synchronizing 8 76 3 25 5 42 16 143 9 9 3.9
Updating 2 9 0 0 0 0 2 9 4.6 4.6 0.3
Viewing changes 1 26 1 134 2 117 4 277 65 69 58.5
Running tests 5 88 4 68 4 70 13 226 18 17 1.3
Message notification 0 0 0 0
Interaction with graph 0 15 1 16
Interaction with list 0 0 2 2
Yellow conflict 0 1 2 3
Red conflict 0 0 2 2
Task starts 1 1 1 3
Task ends 1 1 1 3

Total 34 51 41 126

changes broke his tests, which is not true. He then re-implement the changes, checks them in and informs
P8, who updates the code and successfully re-runs the tests.

Task 2. The first half of this task is disturbed by the loss of connection with the server, which prevents the
participants from seeing the first emerging conflicts as they occur. When P7 is about to finish and P8 is half
way through the implementation, the experimenter detects the problem and asks them to reconnect. Straight
away P8 observes the emerging conflict in PlainTextLogger and contacts P7 to tell him what methods he
is modifying. P8 also says what he is changing, and they identify that they have conflicts only in method
addError. They decide that P7 should check in his changes and P8 can handle the merging. After P7 checks
in, P8 merges the code, which is straight forward, runs the tests, and checks in the code. P7 then updates and
successfully re-runs the tests.

Task 3. In this task, P7 keeps on using the graph view instead of using the list. In addition, at the beginning
of the task, P8 updates the tests to the version in the repository, which removes the test he has to fix from
the workspace. After some time trying to locate the test class, P8 calls the experimenter, who has to copy
it back to the workspace. Meanwhile, P7 keeps looking at the graph while implementing the changes, but
no emerging conflict appears until he finished and checks in. At the same time P7 checks in, an emerging
conflict appears, and P8 asks P7 whether he is changing JsonLogger. P7 says he has already checked in
and asks P8 whether he was saving his file, to which P8 answers he was. The task ends with P8 finishing his
implementation, merging P7’s version into his code, and checking in. Unfortunately, no real parallel coding
happened in this task.

5.4.2 Discussion

The answers of P7 and P8 to the questionnaire indicate that P7 had to merge code for Task 1 and Task 2,
and P8 had to merge code for Task 2 and Task 3. They think that communication was helpful to coordinate
themselves to perform the tasks (strongly agree - P7, agree - P8), except in the case of Task 3 for P8, who
was neutral about it. For Task 2 and Task 3, both participants saw emerging conflicts and communicated as
soon as they saw them (agree). However, they have different opinion on whether knowing about conflicts
in advance helped them to avoid them at check in time (agree - P7, disagree - P8). Indeed, P8 had to merge
code in the last 2 tasks, and the communication they had after seeing emerging conflicts revolved around
coordinating who would check in first, and who would handle the merging.

22



During the interview, the experimenter asked how the communication took place after they saw emerging
conflicts, to with P8 answered:

“I remember that I was asking him some questions about which methods he was changing... It seemed to be
not really hard tasks, so it was easy to solve the conflict, but we still had to talk about it at least to decide who
was going to fix first, who was going to commit the code first.” (P8)

The coordination was kept shallow, and P8 did not manage to understand what the task of P7 was:

“No, not really. I just knew that he was changing some code in parallel with me. That was it.” (P8)

At the beginning of Task 2 there was a disruption caused by a connection loss. When asked about it, P8
expressed that it disturbed the task:

“After we got the connection back, we saw it (conflict). That kind of disturbed the whole task. Made it feel a
little bit artificial.” (P8)

However, even with the disruption, P8 expressed that he preferred the graph view over the list:

“The graph. I think it looks better. Especially the graph that you filter out all the design, and only have
the emerging design. That’s more interesting to me. I think lists... they can be ok, but they don’t allow you to
focus on what’s going on. When you have the graph, you immediately see the issues. There’s not too much of
information. There’s just some colors that just show you like, ’oh, there’s something going on here’, and if you
want to take a look, then you just point to the node and see what’s going on. When you have a list, you kind of
get lost with so much of information.” (P8)

P8 expressed that on a project with very few people involved, he does not think there is a need for pree-
mptive conflict detection, but in a project with many people and lots of concurrent modification, he might
change his mind. In addition, when asked whether he could think of other ways to visualize emerging con-
flicts, he proposed to add cues on the package explorer. This way, he could use it in combination with Mylyn,
and see the emerging conflicts only for the classes he is focused on without having to use another view for
that.

5.5 Run 5

Participant P9 is a PhD student at the Federal University of Campina Grande, and P1 is a PhD student at the
Federal University of Minas Gerais. They have, respectively, 5 and 7 years of experience in Java programming,
3 years of experience in team development, and 1 and 2 years of experience in developing industrial size
systems. They have used SCM, IDEs, and specifically Eclipse for 5 and 6 years, and have 5 and 7 years of
experience with JUnit. P9 has no previous knowledge of Checkstyle, while P10 has 1 years of experience with
it as a user and considers himself comfortable with it.

P9 currently uses SVN and works in a team of 2 people. He checks in the code once a week, and has to
resolve conflicts once a month. P10 uses Git, SVN, and Rietveld, and works in teams that vary from 2 to 5
people depending on the project. Currently he is working on a project with another person, thus he checks
in the code every couple of days, but does not have to resolve conflicts frequently.

5.5.1 Observations from Videos

A couple of problems happened that influence the analysis of the data collected from the videos. The screen-
casts have the video accelerated in comparison with the voice. Since we ignore the voice, and it was not
possible to compute the acceleration factor, the duration of events are skewed: the more towards the end an
event is, the more skewed to a lower value than it originally is. In addition, the experimenter forgot to start
recording P9’s session, and only realized that at the end of Task 1. Thus, there are no events recorder for P9
for Task 1.

Table 9 shows the frequencies and descriptive statistics for events observed from P9, taken from a 58-
minutes screencast of P9’s computer. There is a total of 225 events, from which the most frequent are interac-

23



tion with graph (63), communication (46), viewing the conflict graph view (31), and viewing the conflict list
view (29) events. Message notification events do not exist on Gmail chat, hence were not captured.

Table 10 shows the frequencies and descriptive statistics for events observed from P10, taken from a 96-
minutes screencast of P10’s computer. There is a total of 131 events, from which the most frequent are com-
munication (37), interaction with graph (20), and running test (16) events. Message notification events do
not exist on Gmail chat, hence were not captured.

Table 9: Frequencies and descriptive statistics for observations of participant P9. The total duration of the events is given
in seconds. The descriptive statistics refer to the duration (in seconds) of the events that have a range

Events T1 Dur. T2 Dur. T3 Dur. Total Dur. Median Mean Stdev.
Communicating 22 125 24 210 46 335 4 6 4.5
Conflict graph 29 679 2 45 31 724 6 23 52.2
Conflict list 0 0 29 472 29 472 10 16 18.3
Checking in 1 4 2 14 3 18 4 6 4.5
Merging 3 26 2 11 5 37 4 7 6.8
Resolving conflict 0 0 0 0 0 0 0 0 -
Synchronizing 5 20 5 14 10 34 3 3 6.2
Updating 1 3 1 2 2 5 2 2 0.3
Viewing changes 2 55 2 32 4 87 17 22 13.7
Running tests 6 33 9 67 15 100 4 7 6.2
Message notification 0 0 0
Interaction with graph 58 5 63
Interaction with list 0 6 6
Yellow conflict 2 2 4
Red conflict 1 2 3
Task starts 1 1 2
Task ends 1 1 2

Total 132 93 225

Although P9’s screencast is missing the events of Task 1, he has generated almost double the number of
event P10 did. In particular, P9 has a high number of events of communication and interaction with the
views. This happens because P9 constantly switched between Eclipse and and the chat window with both
taking the full screen, while P10 had a small chat window on top of Eclipse. Indeed, by inspecting the total
duration of these events, it is possible to see that the total duration of P10’s events is bigger than P9’s, which
is expected since the evens from P9’s first task are missing.

Task 1. The participants start to implement their tasks, and P9 manages to finish it first. He checks in the
code and lets P10 know there is new code in the repository. When P10 finishes his implementation, he checks
the changes implemented by P9. When viewing the changes, he is not able to merge the code directly, be-
cause the compare view detects a conflict. He then manually resolve the conflict by copying the code from
P10’s version into his, making the necessary changes to conform with the refactoring he performed, marking
the code as merged and checking it in. Then, P9 tells P10 to update and re-run the tests, which P10 does
successfully. This task finishes smoothly, with P10 handling the conflict without breaking any tests.

Task 2. This task starts with both participants initializing the graph view and taking some time to interact
with it. P9 spends more time interacting with the graph, while P10 goes to the implementation task. As soon
as they see a warning of emerging conflict they start communicating, and P10 asks P9 which methods he is
modifying. They tell each other which methods they are modifying, and discuss for a while about whether
they can see this information from the graph until P9 finds out it is possible to see it. They decide P10 should
commit the changes to addError (the method both changed) first, so P9 can merge it before they continue
implementing the other methods. As soon as P10 checks in, the conflict warning on the graph becomes red
and P9 notices it. He goes to the chat and sees that P10 has checked in the code. P9 then merges the code,
finishes implementing, checks in the code and tells P10 to update. P10 updates, re-run the tests and checks in
the changes to method fileFinished, and tells P9, who successfully updates the code and re-run the tests.

24



Table 10: Frequencies and descriptive statistics for observations of participant P10. The total duration of the events is
given in seconds. The descriptive statistics refer to the duration (in seconds) of the events that have a range

Events T1 Dur. T2 Dur. T3 Dur. Total Dur. Median Mean Stdev.
Communicating 4 111 13 356 20 241 37 708 14 19 21.8
Conflict graph 0 0 11 1012 1 1 12 1013 51 84 109.1
Conflict list 0 0 0 0 6 558 6 558 66 93 77
Checking in 1 16 2 37 2 35 5 88 16 18 7.8
Merging 1 3 3 17 4 52 8 72 3 9 14.1
Resolving conflict 1 31 0 0 1 39 2 70 35 35 5.4
Synchronizing 1 10 3 19 3 10 7 39 4 6 3.4
Updating 0 0 0 0 0 0 0 0 0 0 -
Viewing changes 1 17 2 46 2 132 5 195 36 39 26.9
Running tests 3 62 5 91 8 87 16 240 17 15 5.6
Message notification 0 0 0 0
Interaction with graph 0 20 0 20
Interaction with list 0 0 2 2
Yellow conflict 0 1 1 2
Red conflict 0 2 1 3
Task starts 1 1 1 3
Task ends 1 1 1 3

Total 14 64 53 131

This task also finished smoothly, with the participants taking the strategy to break the check in into smaller
ones when they notice a potential conflict emerging.

Task 3. In this task, instead of jumping into the code immediately, the participants start by asking each
other what methods they have to modify. They find out there is a common method and decide to adopt
the same strategy as in Task 2: Check in and merge the method they had in common as early as possible,
and then continue implementing the other. P9 finishes the implementation of addError first and checks
in for P10 to merge the code. P10 does it with no need to resolve conflicts, and checks it in with all tests
referring to addError passing. Meanwhile, P9 finishes the implementation of fileFinished, and as soon
as P10 checks in, P9 merges the new code and checks in the changes of fileFinished. P10 also finished the
implementation of fileStarted, does the last merge and checks in for P9 to do the last update and re-run
the tests successfully.

5.5.2 Discussion

The answers of the participants to the questionnaire indicate that P9 had to merge code in Task 2 and Task 3,
while P10 merged code in all three tasks. Both participants think that communication was helpful to coordin-
ate themselves to perform the task (agree - P9, strongly agree - P10). When asked about preemptive conflict
detection, they had different opinion. P9 saw emerging conflicts and communicated right after seeing them
(strongly agree), what he thought was very helpful to avoid resolving them at check in time (strongly agree).
Conversely, P10 did not see emerging conflicts and did not think they triggered communication (strongly
disagree). P10 was neutral about whether knowing about conflicts helped to avoid them at check in (neither
agree nor disagree). P10’s negative answer about seeing emerging conflicts, however, is not confirmed on the
interview, when he talks about details of the two views and how they showed conflicts emerging while they
were implementing the tasks.

In general, both participants showed similar behavior when updating the code changed by the other. They
first synchronize the code, then view the differences between the local and the remote versions. After under-
standing the differences, they merge the code by using the built-in automatic merge function of Subversive.
After that, they mark the file as merged and check it in. This process did not change with the introduction of
preemptive conflict detection. What changed, and was also recognized by the participants, is the frequency
and granularity of the check ins. Knowing in advance that they had conflicts, and where these conflicts were
made them decide to resolve them before going on with coding. By keeping the check ins more frequent and

25



the granularity of the changes smaller, they believe the conflict resolution becomes less complex:

“I think it did help, because we started communicating before actually committing all the code, and before
doing other changes in other methods we started communicating when we detected conflicts. So it helped to see
and synchronize what things we were adding and committing the conflicts first to first resolve all the conflicts
and then continue.” (P9)

“I think like it was easier to detect conflicts and do the merge only with small changes instead of looking
through all the code.” (P10)

When asked about which view they preferred, both said to prefer the list for this assignment in particular,
but that the graph could be useful in other situations (e.g., when more people are involved, or when there are
conflicts in depending classes):

“Well, in my opinion, I think the second view (list) is a bit easier to use, because it shows only the classes that
are actually in conflict. So it filters for you, and you don’t need to see the whole thing, you don’t need to, even in
the graph view you can go to the square class (node) that you changed and you can see the same thing, but you
have to do it manually. You have to go there and see what is changing. Maybe the good thing is that you can see
if dependencies are being checked at the same time... but I think the second view was much straight forward.
You can see exactly what’s wrong and resolve conflicts.” (P9)

“I would agree that the second view is better, but the first view, like P9 said, I didn’t think about this before
like, you could see dependencies being changed, but the test didn’t have any. We were always changing one file
only. So the second view is better for that, because you have little changes and you can see. Maybe if we were
changing larger files the first would be good.” (P10)

P10 also reported that the graph was not so intuitive, and that they had difficulties to realize that by hov-
ering over a node, it showed information of which methods of a class were in conflict:

“I think I didn’t know this for a long while. I just saw the square changing colors and I think at the end of
the task while I was waiting for P9 to commit something, I started playing around and then I saw that there
was like ’oh, if I put the mouse here then I can see the changes’, but it wasn’t clear that, and it’s not intuitive that
you were gonna see the changes like that.” (P10)

P9 gave a suggestion to improve the graph view by adding a search option to find a node quickly. When
asked about other ways to warn developers of potential conflicts, P9 suggested to add annotation directly at
the Java Editor to avoid having to use a separate view for that.

Lastly, when asked on whether preemptive conflict detection would be helpful on their everyday coding,
both said it would be useful only in the context of a team greater than two:

“... if you code with someone else, there is two people and maybe that’s easier to synchronize, but in the past
definitely, when we worked on Ourgrid and stuff, there were always conflicts. Maybe having a large project and,
maybe not even on the class scale there aren’t two people editing the same class, but there’s a dependency that
both people are editing and there’s gonna be a problem. And also, some people just don’t want to commit right
away, and you’re doing the same thing he did or whatever. So that would be helpful.” (P10)

“Nowadays the team is only two people working, so we don’t really need something like that, because when
we plan to do something on the code, we always try to share the most and try not to have conflicts, but on the
planning phase, not afterwards when implementing. But actually, sometimes even with two people it happens.
It happens sometimes with me, so it would be useful and even more useful on the past when I worked with 5-6
people in the same project, I think it would be even more useful. ” (P9)

5.6 Run 6

The participants (P11, P12) of this run are Master students with, respectively, 5 and 4 years of experience in
Java development, 6 years and 1 year of experience with team development, and no experience with develop-
ment industrial size teams. They have 5 and 4 years of experience with using IDEs, 3 years of experience with
Eclipse, 4 and 2 years of experience with using SCM, and 3 years and 1 year of experience with JUnit. They
have no previous experience with Checkstyle.

26



The participants currently use SVN and often work in teams of 3-5 people (P11) and 5 people (P12). P11
reports that his check in frequency depends on how much he is involved in the project. For projects in which
he has a relevant role, he checks in many times per day, because he prefers to check in frequently to avoid
conflicts, though he has to deal with them once a week. P12 reports that he checks in often, and rarely has to
resolve conflicts. He says sometimes he forgets to check out before start working, and that is when he mostly
deals with conflicts.

5.6.1 Observations from Videos

Table 11: Frequencies and descriptive statistics for observations of participant P11. The total duration of the events is
given in seconds. The descriptive statistics refer to the duration (in seconds) of the events that have a range

Events T1 Dur. T2 Dur. T3 Dur. Total Dur. Median Mean Stdev.
Communicating 4 1644 5 330 12 1016 21 2990 56 142 235.2
Conflict graph 0 0 4 1249 0 0 4 1249 185 312 309.6
Conflict list 0 0 0 0 1 2028 1 2028 2028 2028 -
Checking in 2 34 2 63 1 22 5 119 19 24 11.7
Merging 0 0 0 0 0 0 0 0 0 0 -
Resolving conflict 0 0 0 0 0 0 0 0 0 0 -
Synchronizing 0 0 0 0 0 0 0 0 0 0 -
Updating 0 0 1 5 3 11 4 16 4 4 1.2
Viewing changes 0 0 0 0 0 0 0 0 0 0 -
Running tests 1 15 3 33 4 47 8 95 11 12 2.3
Message notification 0 6 5 11
Interaction with graph 0 3 0 3
Interaction with list 0 0 4 4
Yellow conflict 0 1 1 2
Red conflict 0 1 2 3
Task starts 1 1 1 3
Task ends 1 1 1 3

Total 9 28 35 72

Table 11 shows the frequencies and descriptive statistics for events observed from P11, taken from a 92-
minutes screencast of P11’s computer. There is a total of 72 events, from which the most frequent are com-
munication (21), message notification (11), and running tests (8) events. The number of events from P11’s
video is the lowest compared with all other participants, and there is a strong reason for that. P11 managed to
finish the implementation of all the tasks before P12 (sometimes even before P12 had started), which means
he did not have to merge or resolve conflicts throughout the assignment. Another observation is that after
P12 had checked in, P11 was supposed to update his code and re-run the tests. However, he did not re-run
the tests in any of the tasks.

Table 12 shows the frequencies and descriptive statistics for events observed from P12, taken from a 93-
minutes screencast of P12’s computer. There is a total of 132 events, from which the most frequent are mes-
sage notification (41), communication (32), and running tests (25) events.

Task 1. The participants start to implement the task, and when P11 finishes, he asks P12 whether he is
done, but P12 says he is still working on the task. P11 then waits for a while, but then decides to check
in his changes to the repository. After a while, P12 also finishes and tries successive times to check in, but
they failed for different reasons. In the first attempt, P12 is trying to check in the entire project, and keeps
receiving a message that some folders are outdated in his copy. P12 then updates the code, which introduces
conflicts between his new code and P11’s one. Faced with a broken class, P12 tries to understand the changes
introduced by P11. Meanwhile, P11 suggests P12 to copy the new code P12 introduced, revert the code, and
paste the code back in. P12 reverts the code, but forgets to copy what he implemented before, thus he has
to re-implement everything from scratch. After he finishes re-implementing his changes, he tries to check in
the code twice with no success. After, telling to P11 he could not check in, P11 alerts him that he should only

27



Table 12: Frequencies and descriptive statistics for observations of participant P12. The total duration of the events is
given in seconds. The descriptive statistics refer to the duration (in seconds) of the events that have a range

Events T1 Dur. T2 Dur. T3 Dur. Total Dur. Median Mean Stdev.
Communicating 13 196 9 161 10 106 32 463 11 14 9.8
Conflict graph 0 0 2 1057 0 0 2 1067 528 528 375.9
Conflict list 0 0 0 0 1 2031 1 2031 2031 3021 -
Checking in 5 150 1 30 1 43 7 223 30 32 11.7
Merging 1 10 1 8 0 0 2 18 9 9 1.1
Resolving conflict 1 174 1 41 0 0 2 215 107 107 94.2
Synchronizing 0 0 0 0 0 0 0 0 0 0 -
Updating 2 23 1 7 2 9 5 39 7 8 4.4
Viewing changes 0 0 0 0 0 0 0 0 0 0 -
Running tests 3 50 5 84 17 293 25 427 16 17 5.5
Message notification 14 12 15 41
Interaction with graph 0 3 0 3
Interaction with list 0 0 2 2
Yellow conflict 0 1 1 2
Red conflict 0 0 2 2
Task starts 1 1 1 3
Task ends 1 1 1 3

Total 41 38 53 132

check in the classes from the src folder. After four failed attempts, P12 checks in the code and informs P11.
P11 does not re-run his tests and they finish Task 1.

Task 2. In this task, P12 has the initiative of asking P11 what his task is before they start implementing.
However, none take any extra action after they share what they have to do. In addition, P12 starts by fixing a
test that is of P11’s responsibility to fix. P11 is fast implementing, and when he is about to finish, P12 starts
the implementation of method addError. The warning of emerging conflict only appears when P11 is about
to check in, and he immediately calls P12’s attention to the existence of the conflict. P11 asks P12 whether
he should check in, to which P12 answers positively. P12 directly updates the code, without inspecting the
changes introduced by P11 first, which causes a conflict that breaks the code. This is when P12 realizes he
and P11 implemented the same check (referring to the severity level). P12 continues the implementation,
and when all the tests for PlainTextLogger are passing, he checks in the code and lets P11 know. Once
more, P11 does not update the code, nor re-run the tests.

Task 3. Again in the beginning of the task, P12 asks P11 what he has to implement, but P11 takes a long
time until he looks at the chat window. P11 finally answers P12 at the same time that a warning of emerging
conflict in method addError appears. He asks P12 what he is doing, and calls P12’s attention about the
warning. P11 says he fixed the test related to the message, and P12 says he is working on the test related to the
security level. They decide that P11 should check in first, and P12 merges the code, hence P11 checks in. To
merge, P12 copies the code he implemented, reverts the local copy of JsonLogger to the latest version in the
repository (the one P11 checked in), and pastes his code in the updated version. This work around prevents
the appearance of conflicts, and can be considered an unconventional way of merging. P12 implements the
second method of this task, checks in the code, and they finish the task once more with P11 not performing
the last code update and test re-run.

5.6.2 Discussion

The answers of P11 and P12 to the questionnaire confirm that P12 was the one merging code in Task 1 and
Task 2. For Task 1 one, they indicate that communication was helpful for them to coordinate and to perform
the task (agree), even though P12 had problems merging the code in this task. For Task 2 they think that
communication was helpful (agree), and that they communicated with each other as soon as they saw the
warning of conflicts emerging. They think knowing about conflicts in advance helped them to avoid them at

28



check in time (agree - P11, strongly agree - P12), even though it did not prevent P12 from having to merge.
For Task 3, none indicates they had to merge, even though the screencast shows that P12 merged code. They
indicate that communication was somewhat helpful to perform the task (agree - P11, neither agree nor dis-
agree - P12). Lastly, they communicated with each other as soon as they saw conflicts emerging, and they
think it was useful to help them to avoid merging code at check in time (agree - P11, strongly agree - P12).

When observing the videos of P11 and P12, it became clear that P12 was unfamiliar with using SVN
through Eclipse, although on the screening questionnaire he indicated that he currently uses SVN. During the
interview, the experimenter asked P12 whether he experienced difficulties when using SVN through Eclipse,
to which he answered that this was the first time he was accessing SVN within Eclipse, because he usually
code in Objective-C and uses SVN through command line. This is probably the reason why P12 exposed a
different behavior from the majority of other participants when merging code: P12 did not synchronize the
code, nor investigated the differences before updating it; in the first task even losing his implementation and
having to redo it.

Apart from P12’s lack of experience with using SVN through Eclipse, another phenomenon observed is
that P11 was extremely fast to resolve the tasks, which almost prevented the warnings of emerging conflicts
to be useful. They are especially useful when both developers are starting to implement a conflicting part of
the code, or at least one of them is at the beginning. In this run, what happened in Task 2 and Task 3 was that
P11 was finishing the implementation when P12 was starting his implementation. Thus it was still useful for
P11 to wait for P12 to finish and check in while P12 was still in the beginning.

During the interview P11 and P12 expressed that knowing about conflicts when they emerge helped them
to coordinate, and they did not need to communicate excessively to know what the other was modifying:

“I think it helped us to coordinate... We asked just ‘Which methods are you modifying?’ just to prevent some
modification.” (P11)

“We didn’t go in the specific like ‘well I’m implementing...’, only the method. It was sufficient to coordinate
because we knew when we were editing the same method.” (P12)

When asked when they talked to each other, they confirmed that they communicated when they saw con-
flicts emerging, but also tried to coordinate in advance:

“I contacted him when I saw a conflict and we started discussing why there was this conflict.” (P11)
“And there were times we contacted each other just at the beginning of the task before starting to do any-

thing. Maybe I asked him ’What part of the code are you going to modify?’. Well, for the conflicts we used just
the view on Eclipse” (P12)

Both P11 and P12 preferred to view the warnings of emerging conflicts on the list view:

“In this example I don’t really have one that I prefer, but I think that if we had to work for hours in a project,
then the second one (list) for me is better because in a table you have all conflicts organized. In the other I didn’t
see, because I didn’t have many files open and so on, but maybe it becomes a really huge graph and it might be
difficult to scroll.” (P11)

“The last one (list) maybe could be better because we are just working in pairs. If we were working in a group
of one hundred of developers, maybe the graph is not so easy to understand when you work.” (P12)

The participants suggested to add visual cues directly in the Java Editor, that could be a mark on the ruler
or a background color on the code.

6 Discussion

In this section we discuss the research questions based on the results reported in Section 5. We first report on
specific behavior that happened with a single individual or in a single run, to then concentrate on behavior
observed across different runs that could indicate a general behavior.

While analyzing the results, we noticed that the participants are naturally split into two distinct groups:

• Beginners: The participants of three runs (1, 3, 6) are master students with no experience with develop-
ing industrial size systems. Though they reported to have experience with SCM systems, some of them

29



clearly have little experience, and struggled to perform the basic SVN operations from Eclipse.

• Advanced: The participants of the other three runs (2, 4, 5) are PhD students with at least one year of
experience developing industrial size systems. Most of them reported to have previously worked in the
industry, thus having practical experience in the field.

In the following, we take into account the two different groups to discuss each research question indi-
vidually.

6.1 RQ1: How do developers behave when they have to merge code and resolve conflicts?

The answer of this question is derived from the data collected for Task 1, which involved the improvement
of a method for one developer, and the refactoring of the code of the same method into a second one for the
other developer.

Beginners. The participants of R1 seldom tried to coordinate, and concentrated the communication after
the first check in. When they communicated, the intention was to let the other know there were new changes
in the repository, instead of explaining what these changes were. The behavior of rushing to avoid dealing
with merging was observed in one of the participants (P2).

The participants of R3 actively communicated in the beginning of the first task to understand what the
task of the other was. They did not wait for check in time to start communicating, which was a different be-
havior from the one observed in the other runs. They were inexperienced on using SVN through Eclipse and
struggled to merge code and resolve conflicts. In the first task, the participant who had no previous exper-
ience (P5) was the one to merge the code. During the merge, he introduced compilation errors in the code
and checked in without solving them. The most experienced participant (P6) also showed lack of experi-
ence when he tried to solve the errors introduced by the other one, and inadvertently reverted the code to
an unfinished version. P6 showed an unconventional behavior to deal with merging. He did not synchronize
the files before inspecting the changes, and manually copied the new code into his local (and outdated) ver-
sion. When he tried to check in, SVN complained that he did not have the newest version, which is when he
updates his code. This behavior costed him time and increased the complexity of a simple merge.

In R6 only the behavior of one participant (P12) could be observed, because he was the only one merging
in all tasks. Although he has experience with using SVN outside Eclipse, he has no previous experience with
using it within Eclipse. Because of his lack of experience, he used a naïve strategy to merge code. First,
he directly updated the code, which introduced compilation errors. After unsuccessfully trying to solve the
errors, he then reverted to the version with the other participant’s changes and lost his own, having to re-
implement them. In terms of communication, the participants started to communicate at check in time, and
kept it shallow, only sharing which methods they have to modify.

With the exception of R3, the participants concentrated their communication after the first check in and
kept it shallow: they communicated either to inform the other there was new code in the repository, or to
briefly explain which methods they were modifying.

The participants of R3 and R6 clearly struggled to deal with merging and showed unexpected strategies to
resolve the conflicts that arose. Their unusual behavior when merging is the main indicator of their lack of
experience with using SVN.

Advanced. In R2 the participants started to communicate after the first failed check in. They tried to co-
ordinate through the chat and shared snippets of the code they implemented. However, the communication
was insufficient for them to understand the changes they introduced had different behavior. This caused an
extra loop of check out, implementation, testing, and check in. After they started to communicate, they kept
the message exchange rate constant, actively coordinating with each other. Regarding the behavior during
the actual merge, they followed the expected behavior: They synchronized the code, inspected the conflict-
ing classes, merged the code by resolving the conflicts either manually or with the help of the Subversive
assistant, and checked the code in.

The participants of R4 started to communicate at check in time, when one was about to check in and
let the other know, who had already checked in first. They discussed to understand each other’s change,
however they did not realize their changes were semantically different and the removal of the changes of one
of them broke the related tasks. Identical to what was observed in R2, this generated an extra check out,

30



implementation, testing and check in. Regarding the behavior during the actual merge, they followed the
expected behavior described above.

The participants of R5 also started to communicate at check in time. In terms of how they merged, they
have similar strategy described below. The behavior of rushing to check in first to avoid dealing with merging
was observed on one of the participants (P10). The other one had no difficulties to understand the semantic
differences of the two implementations and merged the code successfully.

The behavior observed for the advanced participants is more constant than the one from the beginners.
They all started to communicate after the first check in with the intention to let the other know there was new
code, and then to discuss and understand each other’s differences in order to handle the merge. However, in
two instances the communication and the information provided by the Compare view were not sufficient for
the participants to understand the changes they implemented were semantically different.

The behavior when merging was essentially the same for the three runs: to synchronize the code, in-
spect the conflicting classes understanding their differences, merge the code by resolving the conflicts either
manually or with the help of the Subversive assistant, and check the merged code in.

Discussion. A common behavior observed was that developers communicated for coordination purposed,
however they started to effectively communicate after the first check in, except for the participants of one
run who started to coordinate earlier. The communication started with one developers telling the other that
there was new code in the repository, and sometimes explaining the changes he did. In some cases, it evolved
to a discussion in order to understand each other’s implementation; in one instance with developers even
sharing code snippets to help the comprehension. Thus, the coordination strategies were concentrated on
alerting about new code and on understanding the necessary changes to merge successfully.

Regarding the merge itself, there was a clear distinction between beginners and advanced developers.
While the advanced showed a common behavior, in two cases the beginners showed unexpected strategies to
merge and resolve conflicts. Instead of synchronizing the code and inspecting it before merging, they directly
updated the code, which performed the textual merge and introduced conflicts in the form of compilation
errors. In one of the cases, to solve the compilation errors, the participant reverted the code to the latests
version his colleague checked in, which completely erased his implementation.

The struggle to merge is expected when developers are inexperienced. However, an observation that
might be unexpected for some is that in most cases the advanced developers had problems when merging.
In two cases while analyzing the code differences and discussing with their counterparts, developers failed
to understand their implementations were semantically different, consequently failing to merge successfully.
Note that when they performed the merge, they solved the compilation errors, meaning that the direct con-
flict between the two different versions were solved. However, the tests related to the merged code failed,
meaning that the participants failed to solve the semantic conflict that existed between the implementations.
This observation confirms what Grinter observed through a field study [13]: Even experienced developers
face problems merging code. Another behavior observed by Grinter and de Souza [9, 13] that we observed in
at least two instances (when it was explicitly said by a participant) is that developers rushed to check in first
to avoid dealing with merge.

Summary. The observations of how developers behave when they have to merge code can be summarized
as follows:

• Beginners adopt different naïve strategies. Developers who are inexperienced with SVN tend to use
different naïve strategies to merge code. These strategies seem to derive from strategies taken when
using SVN through command line. They struggle to understand how to properly merge the code, some-
times erasing their own changes, or erasing the changes of others.

• Advanced developers behave similarly, but struggle with merge. They usually follow the strategy of
synchronizing the code, inspecting the conflicting classes to understand their differences, merging the
code by resolving the conflicts, and checking the merged code in. However, in most cases they had
difficulties to understand how to properly merge the code, introducing errors that broke the tests. This
confirms Grinter’s observation that even experienced developers face problems merging code [13].

• Developers communicate after the first check in. With one exception, both groups of developers star-
ted to communicate after the first check in or after the first failed attempt to check in.

31



• Communication is kept shallow. In most cases, communication was kept shallow, with developers
only informing the other about new code to the repository.

• A few developers have deeper communication. A few developers communicated more, trying to ex-
plain the changes they introduced or to understand the changes introduced by the others. Some even
shared code snippets over the IM.

• Some developers rush to check in first to avoid dealing with merge. This behavior we observed con-
firms previous findings that developers try to avoid dealing with merge by check in changes before their
colleagues [9, 13].

6.2 RQ2: How does this behavior change when information of emerging conflicts is present?

The answer to this question is derived from the data collected for Task 2 and Task 3. In these tasks developers
had the aid of preemptive conflict detection to alert them of emerging conflicts in real time.

Beginners. The behavior of participants from R1 related to merge strategies did not change when emerging
conflicts were introduced. Their communication triggered by emerging conflicts did not facilitate the resol-
ution of conflicts. In addition, during the interview the participants shared that they thought they did not
understand the concept of preemptive conflict detection, which might be the explanation for the stagnation
of behavior. The communication shifted to start when conflicts emerged, thus a bit before check in time.

The behavior of the participants of R3 changed in an unexpected way when the information of emerging
conflicts was present. Instead of intensifying the communication and starting to communicate earlier, the
participants did the opposite: They communicated less, and only started to communicate at check in time.
During the interview, the most experienced participant attributed this change of behavior to the fact that
the tasks were small, so they could understand what the other was doing just by reading the information
available on the warnings of emerging conflicts. However, the fact that they struggled to merge code and
resolve the conflicts on the tasks in which preemptive conflict detection was present is evidence that they did
not understand the task of the other enough to perform a smooth merge. The participants adopted a strategy
to concentrate the resolution of conflicts with the most experienced one, with the aim of speeding up the
resolution.

For the participants of R6, communication started earlier. On the second task, it started as soon as a con-
flict emerged, and the participants exchanged messages to understand which methods they were changing
after one of them check in first. On the third task, one of the participants attempted to start communicating
at the beginning of the task, but the other only answered when the first conflict emerged. In terms of dealing
with merge, one participant updated the code without previous inspection, which again introduced compil-
ation errors, but he was able to fix them and finish his implementation before checking in. In the last task, he
used a work around: He copied his code, overrode and updated the changed class, and pasted the code back
in the class. This avoided the appearance of compilation errors and he managed to finish the task and check
in the code.

In terms of communication, there were changes in the behavior of the participants. In R3 and R6 the
participants started to communicate earlier, when conflicts started to emerge. In the last task of R6, one of
the participants even attempted to start communicating as soon as the task started. Also at R6 we observed
a slight change in the way participants coordinated: They exchanged messages that actually explained what
changes they performed instead of only informing the other that there were new changes. However, in R1
we did not observed a change of behavior. Participants did not start to communicate before check in time,
probably because they did not understand the concept of preemptive conflict detection.

In terms of dealing with merge, the change of behavior was also different in each run. In R1 there were no
significant changes, while in R3 and R6 a few changes were observed. Participants of R3 decided to leave the
resolution of conflicts to the most experienced developer with the goal of speeding up the task completion,
although he also struggled to perform the merges. In R6 we observed a gradual change in the behavior of
the participant who resolved the conflicts. First, he was aware of existing conflicts, but did not know how to
benefit from it, thus taking the same steps to merge code as in the first task, which introduced compilation
errors. Then, he adopted the following strategy to successfully avoid break the code when merging: He copied
his code, overrode and updated the changed class, and pasted the code back in the class. The strategy he used
to merge is unusual for those who use SVN through Eclipse, but very similar to what would be expected from
someone using SVN through command line.

32



Advanced. The participants of R2 started to communicate as soon as a warning of emerging conflict ap-
peared, bringing the coordination to an earlier stage. They kept on sharing code snippets to understand each
other’s code. They tried to coordinate the check ins more efficiently by allowing the least experienced de-
veloper to check in first, so the most experienced one could deal with merging. They also split the check ins
into smaller ones to reduce the complexity of a merge, when the merge was necessary.

The participants of R4 started to communicate earlier, when conflict warnings emerged. They identified
which method had conflicts and decided who would check in first and who would be responsible for merging.
Although coordination was kept shallow, and they did not need to get into details of the implementation of
the other to deal with merging, they still felt the need to talk about the emerging conflict at least to decide
who would merge.

The participants of R5 started to communicate earlier. On the second task, they started to communicate
when they saw conflicts emerging and shared which methods they had to implement to identify which ones
they had in common. On the last task, the communication started even earlier, when they started the task.
They also coordinated by identifying which method would probably be conflicting and decided to check in
the changes to it as soon as possible. In terms of merging, they decided to adopt the following strategy: break
the check ins into smaller ones comprising of only the conflicting method first, and then the other methods.
With this strategy, they merged the code and resolved the conflicts as early as possible, doing all of them
successfully.

We observed a change of behavior in all three runs for both communication and merge strategies. In
three cases participants started to communicate earlier, when conflicts started to emerge. For coordinating
the merge itself, they had different strategies. In R2 participants decided to let the most experienced one deal
with merging, and intensified their explanations of the changes they did. They also broke the check ins into
smaller ones to reduce the complexity of the merge. The participants of R4 coordinated to decide who would
change first and who would merge, however the did not give preference to one person to merge code. In R5
the participants also broke the check ins into smaller ones, though they did not assign a specific person to
handle the merge. In general, participants had no difficulties in merging the code that they previously knew
was conflicting.

Discussion. First of all, changes in the behavior of participants were observed, with some commonalities
among the runs. Except for R1, participants started to communicate when conflicts emerged instead of doing
it so only at check in time. Some of them also intensified the explanation of their changes to their counter-
parts, helping them to understand better what needed to be merged. This finding is more significant than
the ones from previous studies [2, 10], because while they found that communication increased, we actually
observed that communication was deeper, with developers giving more detailed explanations, and started
earlier.

The participants adopted two new strategies to coordinate their activity. The first one was to let the most
experienced developer deal with merging with the goal of speeding up the task completion. The second
strategy observed was to split the check ins into smaller ones to reduce the complexity of the merges.

In the case of beginners, the ones who adopted the first coordination strategy still had problems with
merging, because the most experience participant struggled to resolve conflicts. The ones who only brought
the communication and intensified their explanations of new changes had a change on the merge strategy,
finishing the last task more efficiently than in the first two tasks.

In the case of advanced, all intensified the coordination in the sense that they discussed who should check
in first and who should be responsible for merging. In two runs, they also decided to split the check ins into
smaller ones. The increase of awareness of existing conflicts together with increase in coordination helped
them to perform the merge more successfully, even though the strategy to merge itself did not change. The
participants still used the same strategy as in the first task: to synchronize the code, inspect the conflicting
classes to understand their differences, merge the code by resolving the conflicts either manually or with the
help of the Subversive assistant, and check the merged code in.

Summary. The observations of how the developers’ behavior changed when exposed with notifications of
emerging conflicts can be summarized as follows:

• Developers started to communicate earlier and had deeper communication. With the exception of
one run, all developers started to communicate before check in time. Most of them also put more effort
in explaining to their counterpart the changes they introduced.

33



• Developers coordinated more effectively. Two new coordination strategies were adopted by developers
in different runs: to discuss and determine who should check in first and who should merge (giving
preference to the most experiences developer to merge); and to split the check ins into smaller ones to
reduce the complexity of the merge.

• Beginners showed a slower change of behavior. They had some difficulties to understand the concept
of preemptive conflict detection. In consequence, they had a slower change of behavior. In one case
the gradual change of behavior led the participants to successfully deal with merging.

• Advanced developers succeeded in merging code. Differently from what happened in the first task, de-
velopers managed to merge code successfully. We attribute this success to a higher level of awareness,
and deeper communication and coordination.

6.3 RQ3: How do developers perceive different approaches to deliver information on emerging con-
flicts?

The goal of preemptive conflict detection is to raise the awareness of developers about changes of others that
can impact their own work [25]. This information, however has to be delivered in a non-intrusive way to avoid
deviating the developers’ attention from coding.

This study has the secondary goal of understanding which views developers prefer to use to receive in-
formation of emerging conflicts. We have exposed developers to two different approaches: a view that shows
conflicts as a list of items, with most of the information delivered as text; and a view that shows a graph of
classes that can be easily reduced to the classes that the developer opens, and that delivers information on
conflicts visually by changing the color of the graph node. During the interview we asked the participants’
opinion on the views and also asked them to give suggestions of other ways to visualize this information.

Participants’ opinion. In the following we present a summary of preferences and comments of the parti-
cipants about the two views.

One participant of R1 prefers the graph, because he thinks the color metaphor in the nodes of the graph
(representing the classes) is a good way to visualize the information. The other participant prefers the list,
though he did not have a chance to use the graph.

One of the participants of R2 prefers the graph view, but because he can use it instead of the package
explorer (he does not like the package explorer metaphor) to keep track of the classes he has recently opened.
This emphasis of this participant’s choice is not in the information of emerging conflicts itself, but on the
possibility of replacing the package explorer with the graph. The other participant prefers the list because he
has aversion for graphs in general. Hence, both participants have reasons other than the visual presentation
of the conflicts to prefer one view over the other.

Both participants of R3 prefer the list metaphor, because one can identify the severity and the location
(class and method) of the conflict just by looking at the items of the list, while with the graph one needs to
hover over to see the location. In short, the participants prefer the metaphor that provides for less effort to
get the most information in a shorter period.

One of the participants of R4 kept using the graph, however it is not known whether he prefers it over the
list, because he could not stay for the interview. The other participant prefers the graph, because it enables
him to focus on the classes he is working on, meaning that he will not see warnings of conflicts in classes that
he is not working on at the moment if he enables the option of seen only the nodes of classes that he opens.
He also prefers the visual layer added on the graph when there is an emerging conflict, which is easy to spot.
He thinks that the list has too much information.

Both participants of R5 prefer the list for this assignment, but think the graph could be useful in other
situations. They think the advantages of the list are that it is more straight forward and shows only the classes
that are actually in conflict. On the other hand, they think the graph can help to show when dependencies
are in conflict, because the edges show call dependency (or inheritance). Also, they think the graph might be
more useful when changing larger files. One of the participants reported that the graph was not so intuitive
and they had difficulties to realize that hovering over the graph would show information of which methods of
a class are in conflict. Thus, it took him longer to get used to the graph than to the view.

Both participants from R6 prefer the list, because it shows all conflicts and details in a compact manner.
They think the graph can grow to a huge size, if the system is large, and it can become difficult to see the
conflict warnings.

34



Summary. The majority of the participants prefer the list (eight of them), and the strongest reason is that
the list presents the important information in a direct and condensed manner. Thus, developers only need
to look at the view to get all the information they need about an emerging conflict. Instead, to get the details
of emerging conflicts in the graph, one needs to hover over the node.

Only three of the participants prefer the graph, with different reasons for their choice. One prefers it
because he can just replace the package explorer with it. Another one prefers the graph because he thinks the
color metaphor in the nodes of the graph (representing the classes) is a good way to visualize the information.
The last participant prefers it because it enables him to focus on the classes he is working on, meaning that
he will not see warnings of conflicts in classes that he is not working on at the moment. He also prefers the
visual layer added on the graph when there is an emerging conflict, which is easy to spot. The last participant
also argued that the list shows too much information at once.

Suggestions on other ways to visualize emerging conflicts. Participants were asked to suggest other ways
to visualize information on emerging conflicts, and surprisingly many of them had the same suggestion: to
show this information directly in the Java editor.

The participants of R1 think it is beneficial to show the information on the editor, and suggested to either
change the background color or to add markers on the ruler. The participants of R2 and R3 suggested to
visualize emerging conflicts by highlighting the code in the Java editor. This highlighting should be a layer
that can be disabled if it becomes disturbing for the developer. The suggestion of one participant of R4 is
to add cues in the package explorer, because it can be combined with Mylyn to focus on code that is being
changed right now and avoid the use of an extra view on Eclipse. The participants of R5 and R6 suggested
annotations directly on the Java editor to avoid the use of a separate view. These annotations could be a
marker on the ruler or a background color on the editor.

Even though adding information directly in the Java editor is a less intrusive approach, developers showed
a strong preference to have it there. Having an enable/disable option should be enough to let a developer
disable it if he feels disturbed by the notifications. Showing information on emerging conflicts only at the
class level in the Java editor would prevent developers from receiving overall information on the system.
Hence, we think that providing the views as an alternative way to look at conflict notifications is also helpful.

7 Concluding Remarks

In the recent years, there has been a significant effort to increase awareness of distributed teams by support-
ing coordination across multiple developers working in parallel on the same code base [2, 14, 18, 24, 25, 3, 7,
23]. These approaches promote workspace awareness by detecting in real time concurrent modification to
software artifacts, especially those that are potentially conflicting: concurrent changes that are likely to cause
merge conflicts at check in time.

There has been a limited number of studies [2, 10, 25] to investigate whether the adoption of tools to pro-
mote workspace awareness is beneficial to developers. Their initial findings suggest that, when preemptive
conflict detection is introduced, the frequency of communication increases, there is a reduction in overlap
work, and an increase in the detection and resolution of conflicts. However, some fundamental questions
concerning the concept of preemptive conflict detection remained open, e.g., “Were the changes observed in
these studies beneficial to developers?”, “Did the developers’ strategies to deal with merging change?”, “Is the
information being delivered disturbing?”, “Would they prefer to get them in a different way?”.

In this work, we have investigated some of these open questions by concentrating in understanding
whether the behavior of developers change when they are exposed to preemptive conflict detection, and
whether this change is beneficial to them. To perform the investigation, we first devised different ways to de-
liver information on emerging conflicts on the IDE, with one of them being the adaptation of previous works
[18, 25], and another one being inspired by tools that show emerging design [7, 23, 26]. Then, we designed and
conducted a qualitative user study in a laboratory setting with pairs of developers who had to resolve a few
tasks in collaboration. We collected data from questionnaires, interviews, observations, and documentation,
and analyzed it in a iterative process to allow for the emergence of our findings.

We first reported on the behavior of developers when dealing with merging code without the help of pree-
mptive conflict detection. Some of our findings conform with the ones from previous studies: developers,
even the experienced ones, struggle with merging [13]; and some developers tend to rush to check in first
to avoid dealing with merging [9, 13]. Other important findings are: developers only start to communicate,
and consequently to coordinate, after the first (attempted) check in; and in most cases the communication

35



remains shallow, with only a few developers putting effort in explaining to their counterpart the changes they
have performed. In terms of how they resolved the conflicts, experienced developers had similar behavior,
while beginners used different, and mostly naïve, strategies.

Then, we reported on the behavior of developers after introducing the concept of preemptive conflict
detection and allowing them to use it during the programming tasks. We have found significant change in
their behavior. First of all, they started to communicate earlier, usually right after the first information on
emerging conflicts appeared. The early communication gave them the opportunity to coordinate better by
adopting different strategies than what they would normally do. We observed two new strategies: to discuss
and decide upfront who would deal with merging the conflicting code; and to break the check ins into smaller
ones aiming at reducing the complexity of the merge.

These changes of behavior proved to be beneficial, given that most of them succeeded in merging when
preemptive conflict detection was present, in contrast with previous struggle when this information was not
available. We believe that having the information at earlier moment than at check in allowed them not only
to coordinate ahead, but also to gradually understand the changes their colleagues were doing, and how their
implementations complemented each other. Thus, it also helped developers to understand beforehand how
to merge the code without introducing errors or breaking tests.

Developers also gave feedback on the different ways information on emerging conflicts was delivered,
indicating their preferences and suggesting other ways. Most of them showed preference to see the list of
emerging conflicts over the graph with overlaid information, though some showed special reasons to prefer
the graph. One of these reasons is that with the graph, one can visualize the dependencies of a class in
conflict, which might be impacted by the resolution of the conflict. Most of the suggestions indicated their
desire to see emerging conflicts directly on the Java Editor, with the annotations on the left side of the editor
we implemented but did not include in the user study as one of the options.

This study has shown that the changes in the behavior of developers when exposed to preemptive con-
flict detection are beneficial in terms of having more effective communication and coordination, as well as in
terms of resolving conflicts with a higher success rate. In addition, we believe that different ways to visualize
this information are complementary to one another, because developers have different preferences, and the
fact that they can choose among different options might help them in the adoption of preemptive conflict de-
tection. Therefore, there is potential for preemptive conflict detection to be adopted by practitioners, though
more research towards effective ways to deliver this information in IDEs should be conducted.

References

[1] R. Barbour. Introducing Qualitative Research. Sage, 2008.

[2] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson. Fastdash: a visual dashboard for fostering awareness in
software teams. In Proceedings of CHI 2007 (25th SIGCHI Conference on Human Factors in Computing Systems),
pages 1313–1322. ACM, 2007.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive detection of collaboration conflicts. In Proceedings of
ESEC/FSE 2011 (European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering), page to be published. ACM Press, 2011.

[4] E. Carmel. Global Software Teams - Collaborating Across Borders and Time Zones. Prentice Hall, 1999.

[5] B. Cornelissen, A. Zaidman, and A. van Deursen. A controlled experiment for program comprehension through trace
visualization. IEEE Transactions on Software Engineering, 99, 2010.

[6] J. Creswell. Qualitative Inquiry & Research Design. Sage, 2nd edition, 2007.

[7] I. da Silva, P. Chen, C. V. der Westhuizen, R. Ripley, and A. van der Hoek. Lighthouse: Coordination through emerging
design. In Proceedings of ETX 2006 (OOPSLA Workshop on Eclipse Technology eXchange), pages 11–15. ACM Press,
2006.

[8] D. Damian, L. Izquierdo, J. Singer, and I. Kwan. Awareness in the wild: Why communication breakdowns occur. In
Proceedings of the ICGSE 2007 (International Conference on Global Software Engineering), pages 81–90. IEEE Com-
puter Society, 2007.

[9] C. R. B. de Souza, D. Redmiles, and P. Dourish. Breaking the code, moving between private and public work in
collaborative software development. In Proceedings of GROUP 2003 (International ACM SIGGROUP Conference on
Supporting Group Work), pages 105–114. ACM Press, 2003.

[10] P. Dewan and R. Hegde. Semi-synchronous conflict detection and resolution in asynchronous software develop-
ment. In Proceedings of ECSCW 2007 (the 10th European Conference on Computer Supported Cooperative Work),
pages 24–28. Springer, 2007.

36



[11] P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces. In Proceedings of CSCW 1992 (ACM
Conference on Computer-supported Cooperative Work), pages 107–114. ACM Press, 1992.

[12] K. Dullemond, B. van Gameren, and R. van Solingen. Virtual open conversation spaces: Towards improved aware-
ness in a gse setting. In Proceedings of the ICGSE 2010 (5th IEEE International Conference on Global Software Engin-
eering), pages 247–256. IEEE Computer Society, 2010.

[13] R. Grinter. Supporting articulation work using software configuration management systems. Computer Supported
Cooperative Work, 5(4):447–465, 1996.

[14] M. L. Guimarães and A. Rito-Silva. Towards real-time integration. In Proceedings of CHASE 2010 (the 2010 ICSE
Workshop on Cooperative and Human Aspects of Software Engineering), pages 56–63. ACM, 2010.

[15] A. Guzzi, L. Hattori, M. Lanza, M. Pinzger, and A. van Deursen. Collective code bookmarks for program comprehen-
sion. In Proceedings of ICPC 2011 (19th IEEE International Conference on Program Comprehension)), pages 101–110,
2011.

[16] J. Hagedorn, J. Hailpern, and K. G. Karahalios. Vcode and vdata: illustrating a new framework for supporting the
video annotation workflow. In Proceedings of the AVI 2008 (The working conference on Advanced visual interfaces),
pages 317–321. ACM, 2008.

[17] L. Hattori and M. Lanza. Syde: A tool for collaborative software development. In Proceedings of ICSE 2010 (32nd
ACM/IEEE International Conference on Software Engineering), pages 235–238, 2010.

[18] R. Hegde and P. Dewan. Connecting programming environments to support ad-hoc collaboration. In Proceedings
of ASE 2008 (23rd IEEE/ACM International Conference on Automated Software Engineering), pages 178–187. IEEE CS
Press, 2008.

[19] J. Herbsleb, A. Mockus, T. Finholt, and R. Grinter. Distance, dependencies, and delay in a global collaboration. In
Proceedings of CSCW 2000 (ACM Conference on Computer Supported Cooperative Work), pages 319–328. ACM Press,
2000.

[20] T. Mens. A state-of-the-art survey on software merging. IEEE Trans. Softw. Eng., 28(5):449–462, 2002.

[21] C. O’Reilly, P. Morrow, and D. Bustard. Improving conflict detection in optimistic concurrency control models. In
Proceedings of the 2001 ICSE Workshops on SCM 2001, and SCM 2003 conference on Software configuration manage-
ment, SCM’01/SCM’03, pages 191–205. Springer-Verlag, 2003.

[22] D. E. Perry, H. P. Siy, and L. G. Votta. Parallel changes in large-scale software development: an observational case
study. ACM Trans. Softw. Eng. Methodol., 10(3):308–337, 2001.

[23] T. Proenca, N. Moura, and A. van der Hoek. On the use of emerging design as a basis for knowledge collaboration.
New Frontiers in Artificial Intelligence, 6284:124–134, 2010.

[24] A. Sarma, G. Bortis, and A. van der Hoek. Towards supporting awareness of indirect conflicts across software con-
figuration management workspaces. In Proceedings of ASE 2007 (22nd IEEE/ACM International Conference on Auto-
mated Software Engineering), pages 94–103. IEEE CS Press, 2007.

[25] A. Sarma, D. Redmiles, and A. van der Hoek. Empirical evidence of the benefits of workspace awareness in software
configuration management. In Proceedings of FSE 2008 (16th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering), pages 113–123. ACM Press, 2008.

[26] F. Servant, J. A. Jones, and A. van der Hoek. Casi: preventing indirect conflicts through a live visualization. In
Proceedings of CHASE 2010 (the 2010 ICSE Workshop on Cooperative and Human Aspects of Software Engineering),
pages 39–46. ACM, 2010.

[27] B. van Rompaey and S. Demeyer. Estimation of test code changes using historical release data. In Proceedings of
WCRE 2008 (15th Working Conf. on Reverse Engineering), pages 269–278. IEEE Computer Society, 2008.

[28] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer. Studying the co-evolution of production and test code
in open source and industrial developer test processes through repository mining. Empirical Software Engineering,
16:325–364, 2011.

37



A Screening Questionnaire

Using Google Docs3, we designed an online questionnaire that served both to provide an easily accessible
platform for the participants to enroll and to allow us to capture their personal and experience information.

3http://docs.google.com

38

http://docs.google.com


B Handout

The participants were given a handout with instructions about the assignment and the tasks. In the following
an illustration of the handout is shown.

39



40



41



42



C Data from Questionnaires

For the sake of transparency and repeatability, we make available the participants’ answers to the question-
naires.

Table 13, Table 14, and Table 15 contain the answers to the screening questionnaire, whereas Table 16
contains the answers to the debriefing questionnaire.

43



Ta
bl

e
13

:
Fi

rs
tp

ar
to

ft
h

e
an

sw
er

s
to

th
e

sc
re

en
in

g
q

u
es

ti
o

n
n

ai
re

E
xp

er
ie

n
ce

L
ev

el
R

u
n

Id
A

ge
E

d
u

ca
ti

o
n

b
ac

k-
gr

o
u

n
d

C
u

rr
en

t
p

o
si

-
ti

o
n

Ja
va

Te
am

d
ev

el
-

o
p

m
en

t
D

ev
.

in
d

u
st

ri
al

si
ze

sy
st

em
s

U
si

n
g

ID
E

s
U

si
n

g
E

cl
ip

se
fo

r
Ja

va
d

ev
.

U
si

n
g

SC
M

JU
n

it
te

st
in

g
Fa

m
il

ia
ri

ty
w

.
C

h
ec

ks
ty

le

R
1

P
1

24
C

o
m

p
u

te
r

sc
ie

n
ce

M
as

te
r

st
u

d
en

t
ad

va
n

ce
d

ad
va

n
ce

d
b

eg
in

n
er

ad
va

n
ce

d
ex

p
er

t
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
n

o
n

e
R

1
P

2
26

C
o

m
p

u
te

r
sc

ie
n

ce
M

as
te

r
st

u
d

en
t

ad
va

n
ce

d
kn

ow
le

d
ge

ab
le

b
eg

in
n

er
ad

va
n

ce
d

ad
va

n
ce

d
kn

ow
le

d
ge

ab
le

n
o

n
e

n
o

n
e

R
2

P
3

28
C

o
m

p
u

te
r

sc
ie

n
ce

P
h

D
st

u
d

en
t

kn
ow

le
d

ge
ab

le
kn

ow
le

d
ge

ab
le

b
eg

in
n

er
ad

va
n

ce
d

b
eg

in
n

er
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
b

eg
in

n
er

R
2

P
4

30
C

o
m

p
u

te
r

sc
ie

n
ce

P
h

D
st

u
d

en
t

b
eg

in
n

er
kn

ow
le

d
ge

ab
le

kn
ow

le
d

ge
ab

le
kn

ow
le

d
ge

ab
le

b
eg

in
n

er
b

eg
in

n
er

b
eg

in
n

er
n

o
n

e
R

3
P

5
23

C
o

m
p

u
te

r
sc

ie
n

ce
M

as
te

r
st

u
d

en
t

ex
p

er
t

ex
p

er
t

b
eg

in
n

er
ex

p
er

t
ex

p
er

t
ex

p
er

t
kn

ow
le

d
ge

ab
le

n
o

n
e

R
3

P
6

22
C

o
m

p
u

te
r

sc
ie

n
ce

M
as

te
r

st
u

d
en

t
ad

va
n

ce
d

ad
va

n
ce

d
n

o
n

e
ad

va
n

ce
d

ad
va

n
ce

d
ad

va
n

ce
d

ad
va

n
ce

d
n

o
n

e
R

4
P

7
30

C
o

m
p

u
te

r
sc

ie
n

ce
P

h
D

st
u

d
en

t
kn

ow
le

d
ge

ab
le

ad
va

n
ce

d
kn

ow
le

d
ge

ab
le

ex
p

er
t

ex
p

er
t

ad
va

n
ce

d
kn

ow
le

d
ge

ab
le

n
o

n
e

R
4

P
8

38
E

le
ct

ri
ca

l
en

gi
n

-
ee

ri
n

g
&

C
o

m
-

p
u

te
r

sc
ie

n
ce

P
h

D
st

u
d

en
t

&
P

ro
fe

ss
o

r
ex

p
er

t
kn

ow
le

d
ge

ab
le

kn
ow

le
d

ge
ab

le
ad

va
n

ce
d

ad
va

n
ce

d
ex

p
er

t
kn

ow
le

d
ge

ab
le

n
o

n
e

R
5

P
9

24
C

o
m

p
u

te
r

sc
ie

n
ce

P
h

D
st

u
d

en
t

ex
p

er
t

kn
ow

le
d

ge
ab

le
kn

ow
le

d
ge

ab
le

ad
va

n
ce

d
ad

va
n

ce
d

ex
p

er
t

kn
ow

le
d

ge
ab

le
n

o
n

e
R

5
P

10
24

C
o

m
p

u
te

r
sc

ie
n

ce
P

h
D

st
u

d
en

t
ex

p
er

t
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
ad

va
n

ce
d

ad
va

n
ce

d
ad

va
n

ce
d

ad
va

n
ce

d
kn

ow
le

d
ge

ab
le

R
6

P
11

22
C

o
m

p
u

te
r

sc
ie

n
ce

M
as

te
r

st
u

d
en

t
ex

p
er

t
ad

va
n

ce
d

n
o

n
e

ex
p

er
t

ad
va

n
ce

d
ex

p
er

t
kn

ow
le

d
ge

ab
le

n
o

n
e

R
6

P
12

24
C

o
m

p
u

te
r

sc
ie

n
ce

M
as

te
r

st
u

d
en

t
ad

va
n

ce
d

ad
va

n
ce

d
n

o
n

e
ad

va
n

ce
d

ad
va

n
ce

d
kn

ow
le

d
ge

ab
le

kn
ow

le
d

ge
ab

le
n

o
n

e

44



Ta
bl

e
14

:
Se

co
n

d
p

ar
to

ft
h

e
an

sw
er

s
to

th
e

sc
re

en
in

g
q

u
es

ti
o

n
n

ai
re

N
u

m
b

er
o

fy
ea

rs
o

fE
xp

er
ie

n
ce

R
u

n
Id

Ja
va

Te
am

d
ev

el
-

o
p

m
en

t
D

ev
.

in
d

u
st

ri
al

si
ze

sy
st

em
s

U
si

n
g

ID
E

s
U

si
n

g
E

cl
ip

se
fo

r
Ja

va
d

ev
.

U
si

n
g

SC
M

JU
n

it
te

st
in

g
Fa

m
il

ia
ri

ty
w

.
C

h
ec

ks
ty

le

R
1

P
1

5
5

0
5

5
4.

5
5

0
R

1
P

2
6

-
0.

2
6

6
2

0
0

R
2

P
3

5
1.

5
1

2
1.

5
3

2
0

R
2

P
4

2
2

2
2

0.
5

0
0

0
R

3
P

5
5

3
0

3
4

4
3

0
R

3
P

6
4

4
0

4
4

4
4

0
R

4
P

7
5

5
2

5
3

4
2

0
R

4
P

8
7

4
3

7
5

3
4

0
R

5
P

9
5

5
1

5
5

5
5

0
R

5
P

10
7

4
2

6
6

6
7

1
R

6
P

11
5

6
0

5
5

6
3

0
R

6
P

12
4

1
0

4
4

1
1

0

45



Ta
bl

e
15

:
T

h
ir

d
p

ar
to

ft
h

e
an

sw
er

s
to

th
e

sc
re

en
in

g
q

u
es

ti
o

n
n

ai
re

R
u

n
Id

SC
M

Sy
st

em
cu

r-
re

n
tl

y
u

se
d

W
o

rk
in

te
am

s
Si

ze
o

ft
h

e
te

am
Fr

eq
u

en
cy

o
fc

h
ec

k
o

u
t

Fr
eq

u
en

cy
o

fc
h

ec
k

in
Fr

eq
u

en
cy

o
f

ap
p

ea
ra

n
ce

co
n

-
fl

ic
ts

R
1

P
1

G
it

an
d

a
b

it
o

fS
V

N
ye

s
3-

5
d

u
ri

n
g

U
N

I,
2-

3
o

u
ts

id
e

U
N

I
p

ro
je

ct
s

V
ar

io
u

s
ti

m
es

p
er

d
ay

d
u

ri
n

g
h

ig
h

ac
ti

vi
ty

;
o

n
ce

p
er

d
ay

d
u

ri
n

g
n

o
r-

m
al

ac
ti

vi
ty

p
er

io
d

s

V
ar

io
u

s
ti

m
es

p
er

d
ay

d
u

ri
n

g
h

ig
h

ac
ti

vi
ty

;
o

n
ce

p
er

d
ay

d
u

ri
n

g
n

o
r-

m
al

ac
ti

vi
ty

p
er

io
d

s

N
o

t
fr

eq
u

en
tl

y,
b

ec
au

se
th

e
te

am
s

Iw
o

rk
in

h
av

e
as

si
gn

ed
ro

le
s/

ta
sk

s

R
1

P
2

N
o

n
e

n
o

B
ef

o
re

co
m

m
it

ti
n

g
to

ch
ec

k
fo

r
co

n
fl

ic
ts

A
s

so
o

n
as

a
h

av
e

a
fu

n
ct

io
n

w
o

rk
-

in
g,

fi
xe

d
a

b
u

g
o

r
ex

ec
u

te
d

an
u

p
-

d
at

e

A
lm

o
st

ev
er

y
ti

m
e

R
2

P
3

St
o

re
(V

is
u

al
W

o
rk

s)
SV

N
(m

ai
n

ly
fo

r
ve

r-
si

o
n

in
g

la
te

x
fi

le
s)

M
o

st
o

f
th

e
ti

m
e

N
O

M
ax

im
u

m
o

f
2

p
eo

p
le

E
ve

ry
ti

m
e

(d
ay

)I
st

ar
tw

o
rk

in
g

o
n

it
A

ft
er

n
ew

te
st

s
ar

e
cr

ea
te

d
an

d
ru

n
N

o
t

ve
ry

o
ft

en
,

th
an

ks
to

st
o

re
gr

an
u

la
ri

ty
(m

et
h

o
d

le
ve

l)

R
2

P
4

M
o

n
ti

ce
llo

,S
V

N
N

o
O

n
ce

p
er

d
ay

O
n

ce
p

er
h

o
u

r
O

n
ce

p
er

d
ay

R
3

P
5

SV
N

O
ft

en
2-

4
M

o
re

th
an

o
n

ce
a

d
ay

(w
h

en
w

o
rk

-
in

g
in

a
te

am
)

1-
2

p
er

d
ay

D
ep

en
d

s
o

n
th

e
te

am
,

if
w

el
l

tr
ai

n
ed

o
n

ce
a

w
ee

k,
o

th
er

w
is

e
m

o
re

th
an

3
R

3
P

6
SV

N
,G

it
O

ft
en

2
D

ai
ly

D
ai

ly
R

ar
el

y
R

4
P

7
SV

N
Ye

s
2

to
3

W
ee

kl
y

W
ee

kl
y

O
n

ce
a

m
o

n
th

R
4

P
8

C
V

S
So

m
et

im
es

ar
o

u
n

d
3

o
r

4
D

ai
ly

D
ai

ly
It

is
n

o
ts

o
fr

eq
u

en
t,

it
u

su
al

ly
h

ap
-

p
en

s
o

n
ce

ev
er

y
3

m
o

n
th

s
in

th
e

p
re

se
n

t
p

ro
je

ct
R

5
P

9
SV

N
O

ft
en

2
O

n
ce

a
w

ee
k

O
n

ce
a

w
ee

k
O

n
ce

a
m

o
n

th
R

5
P

10
G

it
,S

V
N

,R
ie

tv
el

d
2

to
5

o
n

av
-

er
ag

e
O

cc
as

io
n

al
ly

N
o

t
o

ft
en

,
si

n
ce

cu
rr

en
tl

y
I

am
w

o
rk

in
g

o
n

sm
al

l
(t

w
o

p
eo

p
le

)
o

r
p

er
so

n
al

p
ro

je
ct

s.
So

th
er

e
ar

e
m

o
re

ch
ec

k
o

u
ts

.
I

w
o

u
ld

sa
y

a
m

o
n

th

O
n

ce
ev

er
y

co
u

p
le

o
fd

ay
s

N
o

t
co

m
m

o
n

,
ag

ai
n

sm
al

l
si

ze
d

te
am

s
n

ow
ad

ay
s

R
6

P
11

SV
N

O
ft

en
3-

5
p

eo
p

le
U

su
al

ly
3-

4
ti

m
es

a
d

ay
,

it
re

al
ly

d
ep

en
d

s
o

n
th

e
fr

eq
u

en
cy

o
f

u
p

-
d

at
es

fo
r

th
e

p
ro

je
ct

It
re

al
ly

d
ep

en
d

s
o

n
h

ow
m

u
ch

I
am

in
vo

lv
ed

in
th

e
p

ro
je

ct
,u

su
al

ly
fo

r
p

ro
je

ct
s

in
w

h
ic

h
Ih

av
e

a
re

le
v-

an
t

ro
le

m
an

y
ti

m
es

a
d

ay
.

I
p

re
fe

r
to

co
m

m
it

ch
an

ge
s

fr
eq

u
en

tl
y

to
av

o
id

co
n

fl
ic

ts
.

O
n

ce
a

w
ee

k

R
6

P
12

SV
N

O
ft

en
5

A
lw

ay
s

b
ef

o
re

I
b

eg
in

w
o

rk
in

g
in

o
rd

er
to

av
o

id
co

n
fl

ic
ts

w
h

en
I

co
m

m
it

so
m

et
h

in
g

n
ew

o
r

m
o

d
i-

fi
ed

.

O
ft

en
,

ge
n

er
al

ly
w

h
en

I
m

o
d

if
y

so
m

et
h

in
g

th
at

w
o

rk
s

at
al

l.
R

ar
el

y.
If

it
h

ap
p

en
s,

it
is

ge
n

er
al

ly
d

u
e

to
m

y
la

ck
o

fc
h

ec
ki

n
g

o
u

t
th

e
re

p
o

si
to

ry
b

ef
o

re
st

ar
t

w
o

rk
in

g.

46



Table 16: Answers to the debriefing questionnaire

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Experiment evaluation (1 - strongly disagree to 5 - strongly agree)
Overall, the tasks were feasible 5 4 5 5 5 4 5 5 5 5 5 5
I felt time pressure 1 2 4 2 3 2 3 1 3 1 1 2
I would have needed more guidance to complete the tasks 1 1 1 1 2 2 2 1 1 4 1 1
The warm up phase was useful 2 5 3 5 3 4 4 4 5 5 4 4
The tasks were interesting to do 2 5 5 5 4 4 4 3 4 3 3 4
The tasks were realistic 5 4 5 5 5 4 4 3 4 2 4 3
The experiment was fun to do 5 5 5 3 5 5 5 3 5 5 5 5

Visualizations evaluation (1 - strongly disagree to 5 - strongly agree)
I found the visualizations easy to use 2 3 4 4 5 4 4 4 4 3 5 4
I will be able to get used to using emerging conflicts in every-
day coding

2 3 4 4 4 3 4 4 4 4 5 4

Bugs in the visualizations severely hindered its usefulness 1 3 2 1 3 3 4 2 2 2 1 4

Evaluation of each task (1 - strongly disagree to 5 - strongly agree; yes/no)
Task 1
I had to merge the code before checking it in yes no yes yes no yes yes no no yes no yes
The merge was difficult 4 - 3 3 - 3 1 - 2 1 - 2
I had to resolve conflicts during the merge yes no yes yes no yes yes no yes yes no yes
I communicated with the other participant over Skype yes yes yes yes yes yes yes yes yes yes yes yes
The communication was helpful to coordinate ourselves to
perform the task

4 3 5 5 4 4 5 4 4 5 4 4

Task 2
I had to merge the code before checking it in yes no yes no yes no yes yes yes yes no yes
The merge was difficult 4 - 3 2 3 - 1 2 2 1 - 2
I had to resolve conflicts during the merge yes no yes no yes no yes yes yes yes no yes
I communicated with the other participant over Skype yes yes yes yes yes yes yes yes yes yes yes yes
The communication was helpful to coordinate ourselves to
perform the task

3 4 5 5 4 4 5 4 4 5 4 4

I saw emerging conflicts yes yes yes yes yes yes yes yes yes no yes yes
As soon as I saw conflicts emerging, I communicated with
the other participant

4 3 5 4 1 3 4 4 5 1 5 5

Knowing about conflicts in advance helped me to avoid
them at check in time

2 3 3 5 4 3 4 2 5 3 4 5

Task 3
I had to merge the code before checking it in no yes no yes yes no no yes yes yes no no
The merge was difficult - 4 - 3 3 - - 2 2 1 - -
I had to resolve conflicts during the merge no yes no yes yes no no yes yes yes no no
I communicated with the other participant over Skype yes yes yes yes yes yes yes yes yes yes yes yes
The communication was helpful to coordinate ourselves to
perform the task

3 2 4 5 2 4 5 3 5 5 4 3

I saw emerging conflicts no yes no yes yes yes yes yes yes no yes yes
As soon as I saw conflicts emerging, I communicated with
the other participant

3 3 - 5 2 4 4 4 5 1 5 5

Knowing about conflicts in advance helped me to avoid
them at check in time

3 4 - 5 4 3 4 2 5 3 4 5

47


	Introduction
	Related Work
	Conflict Detection Tools
	Conflict Detection After Check in
	Conflict Detection Before Check in

	Evaluation of Coordination Strategies when Merging

	Preemptive Conflict Detection
	Conflict Detection Algorithm
	Conflicts Plug-in
	List View
	Graph View
	Annotation on the Java Editor


	User Study Design
	Data Collection
	Questionnaires
	Observation
	Interview
	Documents

	Object System
	Tasks
	Pilot Studies
	Operation

	Data Analysis
	Run 1
	Observations from Videos
	Discussion

	Run 2
	Observations from Videos
	Discussion

	Run 3
	Observations from Videos
	Discussion

	Run 4
	Observations from Videos
	Discussion

	Run 5
	Observations from Videos
	Discussion

	Run 6
	Observations from Videos
	Discussion


	Discussion
	RQ1: How do developers behave when they have to merge code and resolve conflicts?
	RQ2: How does this behavior change when information of emerging conflicts is present?
	RQ3: How do developers perceive different approaches to deliver information on emerging conflicts?

	Concluding Remarks
	Screening Questionnaire
	Handout
	Data from Questionnaires

