
Software Bugs and Evolution:
A Visual Approach to Uncover

Their Relationship

Marco D’Ambros and Michele Lanza

- Faculty of Informatics -
University of Lugano

Switzerland

CSMR 2006 - 10th European Conference on Software Maintenance
and Reengineering, Bari, March 22-24, 2006



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

1/20
Case Studies Discussion & Conclusion

Introduction
• Understanding the evolution of large system

is a key issue in software industry
• The evolution is strongly coupled with the

structure of the system

• The history of a system is described by
several kinds of information, among which:
– Source code history as recorded by CVS
– Problem report as stored in Bugzilla

Introduction



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

2/20
Case Studies Discussion & Conclusion

Goal
• Study the relationship between the

evolution of the source code and the
evolution of the problem reports at
any granularity level
– Course grained: To characterize system

modules and compare them
– Fine grained: To detect entities which

revealed problems
– All levels: To detect common patterns in

the evolution of system entities
Introduction



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

3/20
Case Studies Discussion & Conclusion

Data Retrieval

Introduction



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

4/20
Case Studies Discussion & Conclusion

Dealing with Huge Amount of Data
• The RHDB for large systems can contain:

– More than 15k files information
– More than 250k commit-related information
– More than 20k problem report information

• We need an approach to deal with this
amount of data

• We use a visualization technique which
provides a lot of information in a condensed
way

Introduction



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

5/20
Case Studies Discussion & Conclusion

TimeLine View

Introduction Discrete Time Figure

Shortcomings:
• How to relate commit- and bug-related information?
• Scalability
• Aggregation

files commits



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

6/20
Case Studies Discussion & Conclusion

Time Discretization
Continuous time

• The time is divided in intervals, represented by
the rectangles

• All the intervals have the same size

• The size is parametrizable

Discrete time

Introduction Discrete Time Figure



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

7/20
Case Studies Discussion & Conclusion

Gray boundaryRed boundary

Commits/Bug Reports Information
Continue time

Discrete time

Color temperature mapping
Max value

Min value

Before first / after last 
commit / Bug report

After removed from 
the system (only commit)

Gray boundary

Red boundary

Gray boundary

Introduction Discrete Time Figure



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

8/20
Case Studies Discussion & Conclusion

Combining the Information
We have seen how to show commit- and bug-related information

Same time interval

One simple integrated figure

We want to combine the data to get a better understanding of 
the evolution

commits

bugs

Discrete Time Figure

Introduction Discrete Time Figure



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

9/20
Case Studies Discussion & Conclusion

Dealing with any granularity levels
• The Discrete Time

Figure is applicable to
any CVS artifacts (file,
directory, module)

commit bug

Directory

File and Module
commit

bug

• For a directory or a
module we count the
number of commits
(bug reports) for all
the files belonging to it

Introduction Discrete Time Figure



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

10/20
Case Studies Discussion & Conclusion

Scalability Issues

Introduction

• For visualizing many entities
we need to zoom-out, but
• The inner colors are lost, only

the boundaries are visible
• Only birth and death

information are visible
• We need to introduce

another level of abstraction

Dead

Before birth

Unknown

Discrete Time Figure



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

11/20
Case Studies Discussion & Conclusion

12 2

6

6

Discrete Time Figure Phases

Stable Phase

Zoom-in View Zoom-out View

High Stable 
Phase

Spike Phase

Introduction Discrete Time Figure



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

12/20
Case Studies Discussion & Conclusion

Pattern Language
• Based on the Discrete Time Figure we define

a pattern language
– The patterns allows us to characterize the

evolution of software entities
– The patterns are based on the combination of

commit- and bug-related information
– 7 patterns are (formally) defined and presented in

the paper
– The patterns can be automatically detected by

means of a query engine

Introduction Discrete Time Figure Pattern Language



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

13/20
Case Studies Discussion & Conclusion

Addition of Features Pattern
• Idea: Introducing new features in the system

is likely to introduce new bugs
• Appearance: an high stable phase in the

commits (lots of commits) is followed by an
high stable phase in the bug (lots of bugs)

commits

bugs

Zoom-out view

Introduction Pattern LanguageDiscrete Time Figure



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

14/20
Case Studies Discussion & Conclusion

Bug Fixing Pattern
• Idea: The effort revealed by the increasing

number of commits was spent to fix bugs
• Appearance: an high stable phase (lots of

commits) in the commits is followed by a
stable phase in the bug (few bugs)

commits

bugs

Zoom-out view

Introduction Pattern LanguageDiscrete Time Figure



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

15/20
Case Studies Discussion & Conclusion

Refactoring/Code Cleaning Pattern
• Idea: Refactoring and code cleaning require an effort

in terms of commits while they should not introduce
new bugs

• Appearance: an high stable phase in the commits
(lots of commits) is “contained” in a stable phase in
the bugs (the number of bugs remain low)

commits

bugs

Zoom-out view

Introduction Pattern LanguageDiscrete Time Figure



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

16/20
Case Studies Discussion & Conclusion

Case Studies: Systems
Files

400
1.8k

18k Commits

15k

100k

255k Bug ref

700

22k

13k

Apache gccMozilla min Mozilla max

4.6k

32k

7k

Introduction Pattern Language Case StudiesDiscrete Time Figure



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

17/20
Case Studies Discussion & Conclusion

Case Studies: Methodology
1. Build a view with all the

directories of the target
system

2. Apply a query engine on
the view to detect all the
defined patterns

3. Analyze the view to
understand how and
where the patterns are
distributed

Characterize the
system in terms
of patters

Identify areas or
entities for
further inspection

Granularity
level: Directory

Introduction Pattern Language Case StudiesDiscrete Time Figure



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

18/20
Case Studies Discussion & Conclusion

Some Results

• 913 patterns on 1145
directories

• Fast changing
– Lots of spike solutions
– Few entities

“survived” to all the
changes

gcc Mozilla (all 4 modules)
• 1586 patterns on 1647

directories
• 3 patterns appear with

the same frequency
• SeaMonkeyCore has

the max number of
most of the patterns

•Addition of features is much more frequent than Bug
fixing and refactoring/code cleaning

Introduction Pattern Language Case StudiesDiscrete Time Figure



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

19/20
Case Studies Discussion & Conclusion

Pros and cons
+ Language independent approach
+ Automatic detection of phases
+ Scalability

- Hypotheses need to be verified
- The views can be difficult to read for

inexperienced users

Introduction Pattern Language Case Studies Discussion & ConclusionDiscrete Time Figure



Marco D’Ambros - University of LuganoCSMR 2006: March 22-24
Introduction Discrete Time Figure Pattern Language

20/20
Case Studies Discussion & Conclusion

Conclusion
• The Discrete Time Figure technique

– shows the relationship between source code and
bugs evolution

– indicates evolutionary patterns which can be
automatically detected

• Future Work
– Applying the technique on known case studies to

get feedback
– Decrease the granularity to the method/function

level

Introduction Pattern Language Case Studies Discussion & ConclusionDiscrete Time Figure


