Software Bugs and Evolution:
A Visual Approach to Uncover
Their Relationship

Marco D’Ambros and Michele Lanza

- Faculty of Informatics -
University of Lugano
Switzerland

and Reengineering, Bari, March 22-24, 2006

Introduction

« Understanding the evolution of large system
IS a key issue in software industry

* The evolution is strongly coupled with the
structure of the system

* The history of a system is described by
several kinds of information, among which:

— Source code history as recorded by CVS
— Problem report as stored in Bugzilla

Introduction Discrete Time Figure

CSMR 2006: March 22-24 Marco D’Ambros - University of Lugano 1/20

Goal

» Study the relationship between the
evolution of the source code and the
evolution of the problem reports at
any granularity level

— Course grained: To characterize system
modules and compare them

— Fine grained: To detect entities which
revealed problems

— All levels: To detect common patterns in
the evolution of system entities

Introduction Discrete Time Figure
CSMR 2006: March 22-24 Marco D’Ambros - University of Lugano 2/20

Software System

Bugzilla
Cvs Download —
Repository database
A A
He|ad Read Download

: Looking for .
Parsing of Parsing of
: } bug E }
CVS logs references
Store E Store
‘* ‘..f’
e

Release History Database (RHDB)

Intfroduction

Dealing with Huge Amount of Data

 The RHDB for large systems can contain:
— More than 15k files information
— More than 250k commit-related information
— More than 20k problem report information

 We need an approach to deal with this
amount of data

* We use a visualization technique which
provides a lot of information in a condensed
way

Introduction Discrete Time Figure

CSMR 2006: March 22-24 Marco D’Ambros - University of Lugano 4/20

Wramz s2EE

" 'mi'mme” -8

. =] : . g o ol
files commits
Shortcomings:
* How to relate commit- and bug-related information?
« Scalability
» Aggregation

Discrete Time Figure

» Continuous time

Discrete time

* The time is divided in intervals, represented by
the rectangles

* All the intervals have the same size

* The size is parametrizable

Discrete Time Figure

» Continue time

Gray boundary (Bmytbmmdmlyy

Color temperature mapping

<+— Max value

Before first / after last
_>
Gray boundary D commit / Bug report

After removed from
the system (only commit)

Red boundary — [l

<«— Min value

Discrete Time Figure

Combining the Information

We have seen how to show commit- and bug-related information

We want to combine the data to get a better understanding of
the evolution

One simple integrated figure

‘ commits

Discrete Time Figure
‘ ! bugs ‘

Same time interval

Discrete Time Figure

CSMR 2006: March 22-24 Marco D’Ambros - University of Lugano 8/20

Dealing with any granularity levels

* The Discrete Time
Figure is applicable to
any CVS artifacts (file,
directory, module)

* For a directory or a
module we count the
number of commits
(bug reports) for all
the files belonging to it

Directory
commit bug
~Na rdd
File and Module
commit

Discrete Time Figure

CSMR 2006: March 22-24 Marco D’Ambros - University of Lugano

9/20

Scalability Issues

* For visualizing many entities

we need to zoom-out, but

* The inner colors are lost, only
the boundaries are visible Before birth

* Only birth and death
information are visible

 \WWe need to introduce
another level of abstraction

Unknown

Dead "

Discrete Time Figure

CSMR 2006: March 22-24 Marco D’Ambros - University of Lugano 10/20

Discrete Time Figure Phases

Zoom-in View Zoom-out View

«— 66—

« Stable Phase R

| «— 6 —> |

- AN e

€21 |« 2
lnglmﬂl Spike Phase I _

Discrete Time Figure
CSMR 2006: March 22-24 Marco D’Ambros - University of Lugano 11/20

Pattern Language

« Based on the Discrete Time Figure we define
a pattern language

— The patterns allows us to characterize the
evolution of software entities

— The patterns are based on the combination of
commit- and bug-related information

— 7 patterns are (formally) defined and presented in
the paper

— The patterns can be automatically detected by
means of a query engine

Pattern Language

CSMR 2006: March 22-24 Marco D’Ambros - University of Lugano 12/20

Addition of Features Pattern

 ldea: Introducing new features in the system
IS likely to introduce new bugs

 Appearance: an high stable phase in the
commits (lots of commits) is followed by an
high stable phase in the bug (lots of bugs)

Zoom-out view

commits

bugs

Pattern Language

CSMR 2006: March 22-24 Marco D’Ambros - University of Lugano 13/20

Bug Fixing Pattern

* ldea: The effort revealed by the increasing
number of commits was spent to fix bugs

« Appearance: an high stable phase (lots of
commits) in the commits is followed by a
stable phase in the bug (few bugs)

Zoom-out view

commits

bugs

Pattern Language

CSMR 2006: March 22-24 Marco D’Ambros - University of Lugano 14/20

Refactoring/Code Cleaning Pattern

« ldea: Refactoring and code cleaning require an effort
in terms of commits while they should not introduce

new bugs

« Appearance: an high stable phase in the commits
(lots of commits) is “contained” in a stable phase in
the bugs (the number of bugs remain low)

Zoom-out view

commits

bugs

15/20

CSMR 2006: March 22-24 Marco D’Ambros - University of Lugano

Flles Commlts 255K Bug ref 22k

13k
1.8k . 32K

400 5 700

I i T

] Apache Mozilla min B Mozilla max [gcc

Case Studies: Methodology

1. Build a view with all the Granularity
directories of the target =™ |evel: Directory
system

2. Apply a query engine on Characterize the

the view to detect all the —* system in terms
defined patterns of patters

3. Analyze the view to .
|dentify areas or
understand how and —> _ntities for
where the patterns are further inspection
distributed

Case Studies

CSMR 2006: March 22-24 Marco D’Ambros - University of Lugano 17/20

Some Results

gcc Mozilla (all 4 modules)
* 913 patterns on 1145 « 1586 patterns on 1647
directories directories
» Fast changing « 3 patterns appear with
— Lots of spike solutions the same frequency
— Few entities « SeaMonkeyCore has
changes most of the patterns

*Addition of features is much more frequent than Bug
fixing and refactoring/code cleaning

Case Studies

CSMR 2006: March 22-24 Marco D’Ambros - University of Lugano 18/20

+ Language independent approach
+ Automatic detection of phases
+ Scalability

- Hypotheses need to be verified

- The views can be difficult to read for
inexperienced users

* The Discrete Time Figure technique

— shows the relationship between source code and
bugs evolution

— Indicates evolutionary patterns which can be
automatically detected

 Future Work

— Applying the technique on known case studies to
get feedback

— Decrease the granularity to the method/function
level

Discussion & Conclusion

