Collaborative Visualization: Approaches and Techniques

Marco D'Ambros Faculty of Informatics University of Lugano (CH)

Presentation outline

- Introduction
- Models
- Evaluation Criteria
- MVE-based examples
- Non MVE-based examples
- Web-based Visualization
- Summary

Introduction

- Visualization is used in many scientific areas:
 Medicine, biology, chemistry, engineering, etc.
- In all these applications team work is important
- Collaboration in visualization is important as well
- Wood [1] claimed that visualization is a collaborative activity

[1] Wood, Wright, Brodlie, VIS'97

The importance of collaboration

- Work is usually performed by people organized in teams.
- Each participant brings his skills and expertise to the table.
- Multi-disciplinary teams.

The form of collaboration

- No limitations to the geographic positions of the collaborators.
- Different people should be able to drive the visualization.
- Each participant should work in his usual working environment.

Visualization categories

Bergeron [2] divided the goals of visualization in 3 categories:

- Descriptive
 - The subject is known.
 - Typical application: teaching and education.
- Analytical
 - Looking for something known.
- Exploratory
 - Looking for something unknown.

[2] Bergeron, Visualization Reference Models, Visualization '93

Collaborative Visualization Models

- Introduction
- Models
- Evaluation Criteria
- MVE-based examples
- Non MVE-based examples
- Web-based Visualization
- Summary

Haber and McNabb model

It is the model of single user Modular Visualization Environment (MVE)

Shared pipeline for collaboration

- Shortcomings:
 - Limited control.
 - Shared parameters are statically defined.

A general model

Example 1: Independent rendering

Example 2: Synchronized rendering

Example 3: Synchronized mapping - Public filtered data

Example 4: Synchronized mapping - Private filtered data

Evaluation Criteria

- Introduction
- Models
- Evaluation Criteria
- MVE-based examples
- Non MVE-based examples
- Web-based Visualization
- Summary

Evaluation criteria for user

- Nature of the collaboration.
- Collaboration level
 - Data.
 - Parameters.
 - Modules.
- Participation.
- Ease of learning.
- Other features (audio/video conferences, chat, etc.)

Evaluation criteria for developers

- Multiple platforms.
- Performance.
- Reliability.
- Robustness.

Four levels of collaboration

- Local control.
- Local control with shared data.
- Limited shared control.
- Fully shared control.

MVE-Based examples

- Introduction
- Models
- Evaluation Criteria
- MVE-based examples
- Non MVE-based examples
- Web-based Visualization
- Summary

MVE-Based systems

- COVISA
- Shastra (environment) and Poly (visualization)
- COVISE
- MANICORAL
 - Based on AVS/Express
- ONERA
 - Based on AVS5 and IRIS Explorer

COVISA

COVISA Screenshot

COVISA evaluation

Benefits:

- Collaboration nature.
- Collaboration level.
- Participation.
- Ease of learning.
- Shortcomings:
 - Multiple platforms.
 - Performance.
 - Other features.

Shastra

- Collaborative multimedia scientific environment
- Infrastructure for running tools in a collaborative way
- A tool to work in Shastra needs to specify:
 - Services offered (Directory)
 - Where to be contacted (Location)

Shastra and Poly

- Poly is a 3D visualization tool for Shastra
- Collaborative visualization is provided by running several instances of Poly
- All activities regulated by a centralized session manager
- Collaborative Session
 - Started by the group leader
 - Users can join only if invited by him
 - Access or modify permission

Shastra and Poly evaluation

- Benefits
 - Collaboration Nature
 - Collaboration Level
 - Participation
 - Other features
 - Multiple Platforms
- Shortcomings
 - Performance
 - Robustness

Poly screenshot

Non MVE-Based Collaborative Visualization systems

- Introduction
- Models
- Evaluation Criteria
- MVE-based examples
- Non MVE-based examples
- Web-based Visualization
- Summary

Non MVE-Based systems

- CSPray
- Tempus Fugit and Interview
- Sieve
- NPAC SciVis

CSpray: Principle

- Based on the Spray rendering system
- Users can modify the visualization by means of spraycan
- Smart particles (sparts) are fired in the data creating geometrical primitives
- MVE is reversed: Modules flows through the data

CSpray: Collaboration

- Shared visualization space
 - Participants are displayed as eyecon
 - They can move the eyecon to get a different location point on the view
 - Each user can apply his spraycan
 - Private and public spraycan

CSpray screenshot

Web-based Collaborative Visualization Systems

- Introduction
- Models
- Evaluation Criteria
- MVE-based examples
- Non MVE-based examples
- Web-based Visualization
- Summary

Motivations

- World Wide Web
 - At the beginning it was an information repository
 - Publisher-reader interaction only
 - Descriptive visualization only
 - Today it is a distributed computing environment
 - Reader-reader interaction
 - Analytical and exploratory visualization

TANGOsim

- Integrate web-based and standalone application written in any language
- The visualization is rendered and controlled in a web-browser
- Based on the concept of session
 - Every application belongs to a session
 - Every session has a master (floor control)
 - Collaboration among applications belonging to the same session
- Event logging for asynchronous collaboration

TANGOsim architecture

Summary

- Introduction
- Models
- Evaluation Criteria
- MVE-based examples
- Non MVE-based examples
- Web-based Visualization
- Summary

Summary

- We have seen models and applications for collaborative visualization
- Common shortcoming: scalability
- The potentiality of collaboration in visualization is very important

My own view

- Collaborative visualization for software visualization
 - Analyzing a system with developers
 - Detecting low quality components with the maintainer of the module
 - Repository (CVS) visualization: See the impact of changes